Assignment #2

Due on Friday, February 2, 2018

Read Section 5.1 on *Solving the Vibrating String Equation* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.5.1 on Separation of Variables in Gustafson.

Background and Definitions

In these problem set we show that the following initial–boundary value problem for the one–dimensional wave equation has at most one solution:

$$\begin{cases}
 u_{tt} - c^2 u_{xx} = F(x, t), & \text{for } x \in (0, L) \text{ and } t > 0; \\
 u(0, t) = a(t), & \text{for } t \ge 0; \\
 u(L, t) = b(t), & \text{for } t \ge 0; \\
 u(x, 0) = f(x), & \text{for } x \in [0, L]; \\
 u_t(x, 0) = g(x), & \text{for } x \in [0, L],
 \end{cases}$$
(1)

where the function $F: [0, L] \times [0, +\infty) \to \mathbb{R}$ is assumed to be continuous; $f: [0, L] \to \mathbb{R}$ and $g: [0, L] \to \mathbb{R}$ are continuous on [0, L]; $a: [0, +\infty) \to \mathbb{R}$ and $b: [0, +\infty) \to \mathbb{R}$ are continuous functions; and c is a positive constant.

We will use information about the following related homogeneous problem

$$\begin{cases} v_{tt} - c^2 v_{xx} = 0, & \text{for } x \in (0, L) \text{ and } t > 0; \\ v(0, t) = 0, & \text{for } t \ge 0; \\ v(L, t) = 0, & \text{for } t \ge 0; \\ v(x, 0) = 0, & \text{for } x \in [0, L]; \\ v_t(x, 0) = 0, & \text{for } x \in [0, L]. \end{cases}$$

$$(2)$$

Do the following problems

1. Let $v \in C^2([0, L] \times [0, +\infty), \mathbb{R})$ and define

$$E(t) = \frac{1}{2} \int_0^L [c^2(v_x(x,t))^2 + (v_t(x,t))^2] \, dx, \quad \text{for } t \ge 0.$$
(3)

(a) Use the results in the Appendix on Differentiating Under the Integral Sign in the lecture notes at http://pages.pomona.edu/~ajr04747/ to show that the function E: [0, +∞) → R defined in (3) is differentiable for all t > 0.

- (b) Give a formula for computing E'(t) for all t > 0.
- 2. Let $v \in C^2([0, L] \times [0, +\infty), \mathbb{R})$ satisfy the boundary conditions in the BVP in (2).
 - (a) Show that

$$v_t(0,t) = 0, \quad \text{for } t > 0,$$
 (4)

and

$$v_t(L,t) = 0, \quad \text{for } t > 0.$$
 (5)

(b) Use integration by parts and the results in (4) and (5) to show that

$$\int_0^L v_x(x,t)v_{tx}(x,t) \, dx = -\int_0^L v_t(x,t)v_{xx}(x,t) \, dx, \quad \text{for all } t > 0.$$
(6)

3. Use the results in part (b) of Problem 1 and part (b) of Problem 2 to show that, if $v \in C^2([0, L] \times [0, +\infty), \mathbb{R})$ satisfies the boundary conditions in the BVP in (2), then

$$\frac{dE}{dt} = \int_0^L v_t(x,t) [v_{tt}(x,t) - c^2 v_{xx}(x,t)] \, dx, \quad \text{for all } t > 0.$$
(7)

- 4. Let $v \in C^2([0, L] \times [0, +\infty), \mathbb{R})$ be a solution of the homogeneous BVP (2) and let $E: [0, +\infty) \to \mathbb{R}$ be as defined in (3) in Problem 1.
 - (a) Use the result from Problem 3 to deduce that E(t) = 0 for all $t \ge 0$.
 - (b) Deduce that v(x,t) = 0 for all $x \in [0, L]$ and all $t \ge 0$.
- 5. Use the result of part (b) of Problem 4 to prove that the initial-boundary value problem (1) can have at most one solution.

Suggestion: Assume that

$$u_1 \in C^2([0, L] \times [0, +\infty), \mathbb{R}) \text{ and } u_2 \in C^2([0, L] \times [0, +\infty), \mathbb{R})$$

are solutions of the BVP (1) and define

$$v(x,t) = u_1(x,t) - u_2(x,t), \text{ for } x \in [0,L] \text{ and } t \ge 0.$$