Assignment \#2

Due on Friday, February 2, 2018
Read Section 5.1 on Solving the Vibrating String Equation in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.5.1 on Separation of Variables in Gustafson.

Background and Definitions

In these problem set we show that the following initial-boundary value problem for the one-dimensional wave equation has at most one solution:

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=F(x, t), & \text { for } x \in(0, L) \text { and } t>0 \tag{1}\\ u(0, t)=a(t), & \text { for } t \geqslant 0 \\ u(L, t)=b(t), & \text { for } t \geqslant 0 ; \\ u(x, 0)=f(x), & \text { for } x \in[0, L] \\ u_{t}(x, 0)=g(x), & \text { for } x \in[0, L]\end{cases}
$$

where the function $F:[0, L] \times[0,+\infty) \rightarrow \mathbb{R}$ is assumed to be continuous; $f:[0, L] \rightarrow \mathbb{R}$ and $g:[0, L] \rightarrow \mathbb{R}$ are continuous on $[0, L] ; a:[0,+\infty) \rightarrow \mathbb{R}$ and $b:[0,+\infty) \rightarrow \mathbb{R}$ are continuous functions; and c is a positive constant.

We will use information about the following related homogeneous problem

$$
\begin{cases}v_{t t}-c^{2} v_{x x}=0, & \text { for } x \in(0, L) \text { and } t>0 \tag{2}\\ v(0, t)=0, & \text { for } t \geqslant 0 \\ v(L, t)=0, & \text { for } t \geqslant 0 \\ v(x, 0)=0, & \text { for } x \in[0, L] \\ v_{t}(x, 0)=0, & \text { for } x \in[0, L]\end{cases}
$$

Do the following problems

1. Let $v \in C^{2}([0, L] \times[0,+\infty), \mathbb{R})$ and define

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{L}\left[c^{2}\left(v_{x}(x, t)\right)^{2}+\left(v_{t}(x, t)\right)^{2}\right] d x, \quad \text { for } t \geqslant 0 \tag{3}
\end{equation*}
$$

(a) Use the results in the Appendix on Differentiating Under the Integral Sign in the lecture notes at http://pages.pomona.edu/~ajr04747/ to show that the function $E:[0,+\infty) \rightarrow \mathbb{R}$ defined in (3) is differentiable for all $t>0$.
(b) Give a formula for computing $E^{\prime}(t)$ for all $t>0$.
2. Let $v \in C^{2}([0, L] \times[0,+\infty), \mathbb{R})$ satisfy the boundary conditions in the BVP in (2).
(a) Show that

$$
\begin{equation*}
v_{t}(0, t)=0, \quad \text { for } t>0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{t}(L, t)=0, \quad \text { for } t>0 \tag{5}
\end{equation*}
$$

(b) Use integration by parts and the results in (4) and (5) to show that

$$
\begin{equation*}
\int_{0}^{L} v_{x}(x, t) v_{t x}(x, t) d x=-\int_{0}^{L} v_{t}(x, t) v_{x x}(x, t) d x, \quad \text { for all } t>0 \tag{6}
\end{equation*}
$$

3. Use the results in part (b) of Problem 1 and part (b) of Problem 2 to show that, if $v \in C^{2}([0, L] \times[0,+\infty), \mathbb{R})$ satisfies the boundary conditions in the BVP in (2), then

$$
\begin{equation*}
\frac{d E}{d t}=\int_{0}^{L} v_{t}(x, t)\left[v_{t t}(x, t)-c^{2} v_{x x}(x, t)\right] d x, \quad \text { for all } t>0 \tag{7}
\end{equation*}
$$

4. Let $v \in C^{2}([0, L] \times[0,+\infty), \mathbb{R})$ be a solution of the homogeneous BVP (2) and let $E:[0,+\infty) \rightarrow \mathbb{R}$ be as defined in (3) in Problem 1.
(a) Use the result from Problem 3 to deduce that $E(t)=0$ for all $t \geqslant 0$.
(b) Deduce that $v(x, t)=0$ for all $x \in[0, L]$ and all $t \geqslant 0$.
5. Use the result of part (b) of Problem 4 to prove that the initial-boundary value problem (1) can have at most one solution.
Suggestion: Assume that

$$
u_{1} \in C^{2}([0, L] \times[0,+\infty), \mathbb{R}) \text { and } u_{2} \in C^{2}([0, L] \times[0,+\infty), \mathbb{R})
$$

are solutions of the BVP (1) and define

$$
v(x, t)=u_{1}(x, t)-u_{2}(x, t), \quad \text { for } x \in[0, L] \text { and } t \geqslant 0
$$

