Assignment \#3

Due on Friday, February 9, 2018
Read Section 5.1.2 on Fourier Series Expansions in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded, periodic function of period $2 L$, where $L>0$. Assume also that f is integrable over $[-L, L]$; so that,

$$
\begin{equation*}
\int_{-L}^{L}|f(x)| d x<\infty \tag{1}
\end{equation*}
$$

where the integral in (1) denotes the Riemann integral.
Fourier Coefficients of f. The Fourier coefficients of f are defined to be

$$
\begin{gather*}
a_{o}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \tag{2}\\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad \text { for } n=1,2,3, \ldots ; \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad \text { for } n=1,2,3, \ldots \tag{4}
\end{equation*}
$$

Fourier Series Expansion of f. The Fourier series expansion of f is the trigonometric series

$$
\begin{equation*}
a_{o}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right], \quad \text { for } x \in[-L, L] \tag{5}
\end{equation*}
$$

Do the following problems

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded, $2 L$-periodic function that is integrable over $[-L, L]$.
(a) Show that, for any real number r,

$$
\int_{r-L}^{r+L} f(x) d x=\int_{-L}^{L} f(x) d x
$$

Deduce therefore that, for any real numbers c and d such that $d>c$ and $d-c=2 L$,

$$
\int_{c}^{d} f(x) d x=\int_{-L}^{L} f(x) d x
$$

(b) Show that the Fourier coefficients of f are also given by

$$
\begin{gathered}
a_{o}=\frac{1}{2 L} \int_{0}^{2 L} f(x) d x \\
a_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad \text { for } n=1,2,3, \ldots ;
\end{gathered}
$$

and

$$
b_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad \text { for } n=1,2,3, \ldots
$$

2. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded, $2 L$-periodic, and integrable over $[-L, L]$. Assume also that f is even.
(a) Show that the Fourier coefficients of f are given by

$$
\begin{gathered}
a_{o}=\frac{1}{L} \int_{0}^{L} f(x) d x \\
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad \text { for } n=1,2,3, \ldots ;
\end{gathered}
$$

and

$$
b_{n}=0, \quad \text { for } n=1,2,3, \ldots
$$

(b) Give the Fourier series expansion for f in this case.
3. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded, $2 L-$ periodic, and integrable over $[-L, L]$. Assume also that f is odd.
(a) Show that the Fourier coefficients of f are given by

$$
a_{o}=0, \quad \text { for } n=0,1,2,3, \ldots
$$

and

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad \text { for } n=1,2,3, \ldots
$$

(b) Give the Fourier series expansion for f in this case.
4. The Riemann-Lebesgue Lemma. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded and $2 L$-periodic. Assume also that f is square integrable over $[-L, L]$; that is,

$$
\int_{-L}^{L}|f(x)|^{2} d x<\infty
$$

(a) Use the Cauchy-Schwarz inequality to show that f is also integrable over $[-L, L]$.
(b) Let a_{n}, for $n=0,1,2,3, \ldots$, and b_{n}, for $n=1,2,3, \ldots$, denote the Fourier coefficients of f. The Riemann-Lebesgue Lemma states that

$$
\lim _{n \rightarrow \infty} a_{n}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=0
$$

Use integration by parts to prove the Riemann-Lebesgue Lemma for the special case in which $f \in C^{1}(\mathbb{R}, \mathbb{R})$.
5. Let $f:[0, L] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{2 x}{L}, & \text { if } 0 \leqslant x \leqslant \frac{L}{2} \\ \frac{2}{L}(L-x), & \text { if } \frac{L}{2}<x \leqslant L\end{cases}
$$

(a) Sketch the odd, periodic extension of f over the interval $[-2 L, 2 L]$.
(b) Compute the Fourier coefficients of f.
(c) Give the Fourier series expansion for f.
(d) Use graphing software to sketch the approximations

$$
S_{N}(x)=\sum_{n=1}^{N} b_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \text { for } x \in[-L, L]
$$

for N equal to 1,3 and 5 . You may take $L=\pi$ in your sketch.

