Assignment \#4

Due on Friday, February 16, 2018
Read Section 5.1.2 on Fourier Series Expansions in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

In problems 1 and 2, we use the Dirichlet kernel,

$$
\begin{equation*}
D_{N}(z)=\frac{\sin \left[\left(N+\frac{1}{2}\right) z\right]}{2 \sin (z / 2)}, \quad \text { for } z \neq 0 z \neq 0 \text { and } z \in[-\pi, \pi] \tag{1}
\end{equation*}
$$

to evaluate the improper integral $\int_{0}^{\infty} \frac{\sin t}{t} d t$.
Note that the definition of D_{N} given in (1) is the same as the one given in the lecture notes with $L=\pi$. Recall that this is the same as

$$
\begin{equation*}
D_{N}(z)=\frac{1}{2}+\sum_{n=1}^{N} \cos (n z), \quad \text { for } z \in[-\pi, \pi] . \tag{2}
\end{equation*}
$$

Do the following problems

1. The Dirichlet Integral. Define $g(x)=\frac{1}{x}-\frac{1}{2 \sin (x / 2)}$, for $x \neq 0$.
(a) Use L'Hospital's Rule to compute $\lim _{x \rightarrow 0} g(x)$. Use this result to define $g(x)$ at $x=0$ so that g is continuous on $[-\pi, \pi]$, and hence absolutely integrable on $[-\pi, \pi]$.
(b) Show how to define $g^{\prime}(0)$ so that the function g defined in part (a) above becomes a C^{1} function defined on $[-\pi, \pi]$.
(c) With the definition of g given in part (a) above, explain why

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} g(x) \sin \left[\left(N+\frac{1}{2}\right) x\right] d x=0 \tag{3}
\end{equation*}
$$

2. The Dirichlet Integral (Continued). Note that the improper integral

$$
\int_{0}^{\infty} \frac{\sin t}{t} d t
$$

can be evaluated as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin t}{t} d t=\lim _{N \rightarrow \infty} \int_{0}^{(N+1 / 2) \pi} \frac{\sin t}{t} d t \tag{4}
\end{equation*}
$$

(a) Make the change of variables $t=\left(N+\frac{1}{2}\right) z$ in the definite integral on the right-hand side of (4) to rewrite the integral as

$$
\begin{equation*}
\int_{0}^{(N+1 / 2) \pi} \frac{\sin t}{t} d t=\frac{1}{2} \int_{-\pi}^{\pi} g(z) \sin \left[\left(N+\frac{1}{2}\right) z\right] d x+\frac{1}{2} \int_{-\pi}^{\pi} D_{N}(z) d z \tag{5}
\end{equation*}
$$

where g is the function defined in part (a) of Problem 1.
(b) Use (4), (5) and (3) to evaluate the integral $\int_{0}^{\infty} \frac{\sin t}{t} d t$.
3. The Sine Integral Function. The sine integral function, $\mathrm{Si}: \mathbb{R} \rightarrow \mathbb{R}$, is defined by

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t, \quad \text { for } x \in \mathbb{R}
$$

(a) Use graphing software to sketch graph of $y=\mathrm{Si}(x)$.
(b) Use the fact that $\int_{0}^{\infty} \frac{\sin t}{t} d t=\frac{\pi}{2}$ to prove that the sine integral function is bounded. That is, there exists $M>0$ such that

$$
|\operatorname{Si}(x)| \leqslant M, \quad \text { for all } x \in \mathbb{R}
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a functions that is integrable on bounded, closed intervals of \mathbb{R}, and define

$$
F(x)=\int_{0}^{x} f(t) d t, \quad \text { for all } x \in \mathbb{R}
$$

(a) Show that, if f is even, then F is odd.
(b) Show that, if f is odd, then f is even.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable, $2 L$-periodic function whose derivative, f^{\prime}, is absolutely integrable on $[-L, L]$; that is,

$$
\int_{-L}^{L}\left|f^{\prime}(x)\right| d x<\infty
$$

Let a_{o}, a_{n}, b_{n}, for $n \in \mathbb{N}$, denote the Fourier coefficients of f, and $a_{o}^{\prime}, a_{n}^{\prime}, b_{n}^{\prime}$, for $n \in \mathbb{N}$, denote the Fourier coefficients of f^{\prime}.
(a) Show that $a_{o}^{\prime}=0$.
(b) Derive the identities

$$
a_{n}^{\prime}=\frac{n \pi}{L} b_{n}, \quad \text { for } n=1,2,3, \ldots
$$

and

$$
b_{n}^{\prime}=-\frac{n \pi}{L} a_{n}, \quad \text { for } n=1,2,3, \ldots
$$

Deduce that the Fourier coefficients of f^{\prime} can be obtained by term-by-term differentiation of the Fourier series expansion for f.
(c) Show that

$$
\lim _{n \rightarrow \infty}\left(n a_{n}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(n b_{n}\right)=0
$$

Give an interpretation for this result.

