Assignment #5

Due on Friday, March 9, 2018

Read Section 5.3 on *The Dirichlet Problem for the Unit Disc* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.6.1 on *Divergence Theorem*, pp. 46–57, in *Introduction to Partial Differential Equations and Hilbert Space Methods* by Karl E. Gustafson.

Background and Definitions

Divergence. Let \mathcal{U} be an open subset of \mathbb{R}^2 and $\overrightarrow{F} \in C^1(\mathcal{U}, \mathbb{R}^2)$ be a vector field given by

 $\overrightarrow{F}(x,y) = (P(x,y), Q(x,y)), \quad \text{for } (x,y) \in \mathcal{U},$

where $P \in C^1(\mathcal{U}, \mathbb{R})$ and $Q \in C^1(\mathcal{U}, \mathbb{R})$ are C^1 , real-valued functions defined on \mathcal{U} . The divergence of \overrightarrow{F} , denoted div \overrightarrow{F} , is the scalar field, div $\overrightarrow{F} : \mathcal{U} \to \mathbb{R}$ defined by

$$\operatorname{div} \overrightarrow{F}(x,y) = \frac{\partial P}{\partial x}(x,y) + \frac{\partial Q}{\partial y}(x,y), \quad \text{for } (x,y) \in \mathcal{U}.$$

Gradient. Let \mathcal{U} be an open subset of \mathbb{R}^2 and $u \in C^1(\mathcal{U}, \mathbb{R})$ be a scalar field. The gradient of u, denoted ∇u , is the vector field, $\nabla u \colon \mathcal{U} \to \mathbb{R}^2$ defined by

$$\nabla u(x,y) = \left(\frac{\partial u}{\partial x}(x,y), \frac{\partial u}{\partial y}(x,y)\right), \quad \text{for } (x,y) \in \mathcal{U}.$$

Laplacian. Let \mathcal{U} be an open subset of \mathbb{R}^2 and $u \in C^2(\mathcal{U}, \mathbb{R})$ be a scalar field. The divergence of the gradient of u, div ∇u , is called the Laplacian of u, denoted by Δu . Thus,

$$\Delta u = \operatorname{div} \nabla u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2},$$

or

$$\Delta u = u_{xx} + u_{yy}.$$

Laplace's Equation and Harmonic Functions. Let \mathcal{U} denote an open subset of \mathbb{R}^2 . A function $u \in C^2(\mathcal{U}, \mathbb{R})$ is said to satisfy Laplace's equation in \mathcal{U} if

$$u_{xx} + u_{yy} = 0 \quad \text{in } \mathcal{U}. \tag{1}$$

A function $u \in C^2(\mathcal{U}, \mathbb{R})$ satisfying the PDE in (1) is said to be **harmonic** in \mathcal{U} .

The Divergence Theorem in \mathbb{R}^2 . Let \mathcal{U} be an open subset of \mathbb{R}^2 and Ω an open subset of \mathcal{U} such that $\overline{\Omega} \subset \mathcal{U}$. Suppose that Ω is bounded with boundary $\partial\Omega$. Assume that $\partial\Omega$ is a piecewise C^1 , simple, closed curve. Let $\overrightarrow{F} \in C^1(\mathcal{U}, \mathbb{R}^2)$. Then,

$$\iint_{\Omega} \operatorname{div} \overrightarrow{F} \ dx dy = \oint_{\partial \Omega} \overrightarrow{F} \cdot \widehat{n} \ ds, \tag{2}$$

where \hat{n} is the outward, unit, normal vector to $\partial\Omega$ that exists everywhere on $\partial\Omega$, except possibly at finitely many points.

Do the following problems.

- 1. Let \mathcal{U} be an open subset of \mathbb{R}^2 , $\overrightarrow{F} \in C^1(\mathcal{U}, \mathbb{R}^2)$ be a vector field and $u, v \in C^1(\mathcal{U}, \mathbb{R})$ be a scalar fields.
 - (a) Derive the identity: $\operatorname{div}(u\overrightarrow{F}) = \nabla u \cdot \overrightarrow{F} + u \operatorname{div} \overrightarrow{F}$, where $\nabla u \cdot \overrightarrow{F}$ denotes the dot–product of ∇u and \overrightarrow{F} .
 - (b) Derive the identity: $\operatorname{div}(v\nabla u) = \nabla v \cdot \nabla u + v \Delta u$, where $\nabla v \cdot \nabla u$ denotes the dot-product of ∇v and ∇u , and Δu is the Laplacian of u.
- 2. Let \mathcal{U} be an open subset of \mathbb{R}^2 and Ω be an open subset of \mathbb{R}^2 such that $\overline{\Omega} \subset \mathcal{U}$. Assume that the boundary, $\partial \Omega$, of Ω is a simple closed curve parametrized by $\sigma \in C^1([0,1],\mathbb{R}^2)$. Let $u \in C^2(\mathcal{U},\mathbb{R})$ and $v \in C^1(\mathcal{U},\mathbb{R})$. Apply the Divergence Theorem (2) to the vector field $\overline{F} = v \nabla u$ to obtain

$$\iint_{\Omega} \nabla u \cdot \nabla v \, dx dy + \iint_{\Omega} v \Delta u \, dx dy = \oint_{\partial \Omega} v \frac{\partial u}{\partial n} \, ds, \tag{3}$$

where Δu is the Laplacian of u and $\frac{\partial u}{\partial n}$ is the directional derivative of u in the direction of a unit vector perpendicular to $\partial \Omega$ which points away from Ω . This is usually referred to as **Green's identity I** (see p. 47 in Gustafson's book).

3. Let \mathcal{U} be an open subset of \mathbb{R}^2 and Ω be an open subset of \mathbb{R}^2 such that $\overline{\Omega} \subset \mathcal{U}$. Assume that the boundary, $\partial\Omega$, of Ω is a simple closed curve parametrized by $\sigma \in C^1([0,1],\mathbb{R}^2)$. Put $C_o^1(\Omega,\mathbb{R}) = \{v \in C^1(\mathcal{U},\mathbb{R}) \mid v = 0 \text{ on } \partial\Omega\}$; that is, $C_o^1(\Omega,\mathbb{R})$ is the space of C^1 functions in Ω that vanish on the boundary of Ω . Let $u \in C^2(\mathcal{U},\mathbb{R})$. Use Green's identity I in (3) to show that

$$\iint_{\Omega} \nabla v \cdot \nabla u \ dxdy = -\iint_{\Omega} v \Delta u \ dxdy, \quad \text{ for all } v \in C_o^1(\Omega, \mathbb{R}).$$

- 4. Let \mathcal{U} and Ω be as in Problem 3.
 - (a) Use the result from Problem 3 to show that, for any $u \in C^2(\mathcal{U}, \mathbb{R})$ that is harmonic in Ω ,

$$\iint_{\Omega} \nabla u \cdot \nabla v \ dx dy = 0, \quad \text{ for all } v \in C^1_o(\Omega, \mathbb{R}).$$

- (b) Assume that $u \in C^2(\mathcal{U}, \mathbb{R})$ is harmonic in Ω . Show that, if u = 0 on $\partial \Omega$, then u(x, y) = 0 for all $(x, y) \in \Omega$.
- 5. Let \mathcal{U} be an open subset of \mathbb{R}^2 and Ω be an open subset of \mathbb{R}^2 such that $\overline{\Omega} \subset \mathcal{U}$. Assume that the boundary, $\partial \Omega$, of Ω is piecewise C^1 .

Let $f \in C(\mathcal{U}, \mathbb{R})$ and $g \in C(\mathcal{U}, \mathbb{R})$ be given functions. Use the result of Problem 4 to show that the boundary value problem

$$\begin{cases}
 u_{xx}(x,y) + u_{yy}(x,y) &= f(x,y), & \text{for } (x,y) \in \Omega; \\
 u(x,y) &= g(x,y), & \text{for } (x,y) \in \partial \Omega,
\end{cases}$$
(4)

can have at most one solution $u \in C^2(\Omega, \mathbb{R}) \cap C(\overline{\Omega}, \mathbb{R})$.

The PDE in (4),

$$\Delta u = f, \quad \text{in } \Omega,$$

is called Poisson's equation. The BVP in (4) is then the Dirichlet problem for Poisson's equation in Ω .