Assignment \#5

Due on Friday, March 9, 2018
Read Section 5.3 on The Dirichlet Problem for the Unit Disc in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.6.1 on Divergence Theorem, pp. 46-57, in Introduction to Partial Differential Equations and Hilbert Space Methods by Karl E. Gustafson.

Background and Definitions

Divergence. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and $\vec{F} \in C^{1}\left(\mathcal{U}, \mathbb{R}^{2}\right)$ be a vector field given by

$$
\vec{F}(x, y)=(P(x, y), Q(x, y)), \quad \text { for }(x, y) \in \mathcal{U}
$$

where $P \in C^{1}(\mathcal{U}, \mathbb{R})$ and $Q \in C^{1}(\mathcal{U}, \mathbb{R})$ are C^{1}, real-valued functions defined on \mathcal{U}. The divergence of \vec{F}, denoted $\operatorname{div} \vec{F}$, is the scalar field, $\operatorname{div} \vec{F}: \mathcal{U} \rightarrow \mathbb{R}$ defined by

$$
\left.\operatorname{div} \vec{F}(x, y)=\frac{\partial P}{\partial x}(x, y)+\frac{\partial Q}{\partial y}(x, y)\right), \quad \text { for }(x, y) \in \mathcal{U}
$$

Gradient. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and $u \in C^{1}(\mathcal{U}, \mathbb{R})$ be a scalar field. The gradient of u, denoted ∇u, is the vector field, $\nabla u: \mathcal{U} \rightarrow \mathbb{R}^{2}$ defined by

$$
\nabla u(x, y)=\left(\frac{\partial u}{\partial x}(x, y), \frac{\partial u}{\partial y}(x, y)\right), \quad \text { for }(x, y) \in \mathcal{U}
$$

Laplacian. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and $u \in C^{2}(\mathcal{U}, \mathbb{R})$ be a scalar field. The divergence of the gradient of $u, \operatorname{div} \nabla u$, is called the Laplacian of u, denoted by Δu. Thus,

$$
\Delta u=\operatorname{div} \nabla u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

or

$$
\Delta u=u_{x x}+u_{y y}
$$

Laplace's Equation and Harmonic Functions. Let \mathcal{U} denote an open subset of \mathbb{R}^{2}. A function $u \in C^{2}(\mathcal{U}, \mathbb{R})$ is said to satisfy Laplace's equation in \mathcal{U} if

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad \text { in } \mathcal{U} \tag{1}
\end{equation*}
$$

A function $u \in C^{2}(\mathcal{U}, \mathbb{R})$ satisfying the PDE in (1) is said to be harmonic in \mathcal{U}.

The Divergence Theorem in \mathbb{R}^{2}. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and Ω an open subset of \mathcal{U} such that $\bar{\Omega} \subset \mathcal{U}$. Suppose that Ω is bounded with boundary $\partial \Omega$. Assume that $\partial \Omega$ is a piecewise C^{1}, simple, closed curve. Let $\vec{F} \in C^{1}\left(\mathcal{U}, \mathbb{R}^{2}\right)$. Then,

$$
\begin{equation*}
\iint_{\Omega} \operatorname{div} \vec{F} d x d y=\oint_{\partial \Omega} \vec{F} \cdot \widehat{n} d s \tag{2}
\end{equation*}
$$

where \widehat{n} is the outward, unit, normal vector to $\partial \Omega$ that exists everywhere on $\partial \Omega$, except possibly at finitely many points.

Do the following problems.

1. Let \mathcal{U} be an open subset of $\mathbb{R}^{2}, \vec{F} \in C^{1}\left(\mathcal{U}, \mathbb{R}^{2}\right)$ be a vector field and $u, v \in$ $C^{1}(\mathcal{U}, \mathbb{R})$ be a scalar fields.
(a) Derive the identity: $\operatorname{div}(u \vec{F})=\nabla u \cdot \vec{F}+u \operatorname{div} \vec{F}$, where $\nabla u \cdot \vec{F}$ denotes the dot-product of ∇u and \vec{F}.
(b) Derive the identity: $\operatorname{div}(v \nabla u)=\nabla v \cdot \nabla u+v \Delta u$, where $\nabla v \cdot \nabla u$ denotes the dot-product of ∇v and ∇u, and Δu is the Laplacian of u.
2. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and Ω be an open subset of \mathbb{R}^{2} such that $\bar{\Omega} \subset \mathcal{U}$. Assume that the boundary, $\partial \Omega$, of Ω is a simple closed curve parametrized by $\sigma \in C^{1}\left([0,1], \mathbb{R}^{2}\right)$. Let $u \in C^{2}(\mathcal{U}, \mathbb{R})$ and $v \in C^{1}(\mathcal{U}, \mathbb{R})$. Apply the Divergence Theorem (2) to the vector field $\vec{F}=v \nabla u$ to obtain

$$
\begin{equation*}
\iint_{\Omega} \nabla u \cdot \nabla v d x d y+\iint_{\Omega} v \Delta u d x d y=\oint_{\partial \Omega} v \frac{\partial u}{\partial n} d s \tag{3}
\end{equation*}
$$

where Δu is the Laplacian of u and $\frac{\partial u}{\partial n}$ is the directional derivative of u in the direction of a unit vector perpendicular to $\partial \Omega$ which points away from Ω. This is usually referred to as Green's identity I (see p. 47 in Gustafson's book).
3. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and Ω be an open subset of \mathbb{R}^{2} such that $\bar{\Omega} \subset \mathcal{U}$. Assume that the boundary, $\partial \Omega$, of Ω is a simple closed curve parametrized by $\sigma \in C^{1}\left([0,1], \mathbb{R}^{2}\right)$. Put $C_{o}^{1}(\Omega, \mathbb{R})=\left\{v \in C^{1}(\mathcal{U}, \mathbb{R}) \mid v=0\right.$ on $\left.\partial \Omega\right\} ;$ that is, $C_{o}^{1}(\Omega, \mathbb{R})$ is the space of C^{1} functions in Ω that vanish on the boundary of Ω. Let $u \in C^{2}(\mathcal{U}, \mathbb{R})$. Use Green's identity I in (3) to show that

$$
\iint_{\Omega} \nabla v \cdot \nabla u d x d y=-\iint_{\Omega} v \Delta u d x d y, \quad \text { for all } v \in C_{o}^{1}(\Omega, \mathbb{R})
$$

4. Let \mathcal{U} and Ω be as in Problem 3 .
(a) Use the result from Problem 3 to show that, for any $u \in C^{2}(\mathcal{U}, \mathbb{R})$ that is harmonic in Ω,

$$
\iint_{\Omega} \nabla u \cdot \nabla v d x d y=0, \quad \text { for all } v \in C_{o}^{1}(\Omega, \mathbb{R})
$$

(b) Assume that $u \in C^{2}(\mathcal{U}, \mathbb{R})$ is harmonic in Ω. Show that, if $u=0$ on $\partial \Omega$, then $u(x, y)=0$ for all $(x, y) \in \Omega$.
5. Let \mathcal{U} be an open subset of \mathbb{R}^{2} and Ω be an open subset of \mathbb{R}^{2} such that $\bar{\Omega} \subset \mathcal{U}$. Assume that the boundary, $\partial \Omega$, of Ω is piecewise C^{1}.
Let $f \in C(\mathcal{U}, \mathbb{R})$ and $g \in C(\mathcal{U}, \mathbb{R})$ be given functions. Use the result of Problem 4 to show that the boundary value problem

$$
\left\{\begin{align*}
u_{x x}(x, y)+u_{y y}(x, y) & =f(x, y), & & \text { for }(x, y) \in \Omega \tag{4}\\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial \Omega
\end{align*}\right.
$$

can have at most one solution $u \in C^{2}(\Omega, \mathbb{R}) \cap C(\bar{\Omega}, \mathbb{R})$.
The PDE in (4),

$$
\Delta u=f, \quad \text { in } \Omega
$$

is called Poisson's equation. The BVP in (4) is then the Dirichlet problem for Poisson's equation in Ω.

