Assignment \#6

Due on Monday, April 2, 2018
Read Section 5.3 on The Dirichlet Problem for the Unit Disc in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

In Section 5.3.6 of the class lecture notes at http://pages.pomona.edu/~ajr04747/, we showed that, for any given $g \in C\left(\partial D_{1}, \mathbb{R}\right)$, where $D_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ is the open, unit disc in \mathbb{R}^{2}, there exists a function $u \in C^{2}\left(D_{1}, \mathbb{R}\right) \cap C\left(\bar{D}_{1}, \mathbb{R}\right)$ that solves the BVP

$$
\left\{\begin{aligned}
u_{x x}+u_{y y} & =0 & & \text { in } D_{1} \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial D_{1}
\end{aligned}\right.
$$

Indeed, u is given by the Poisson integral representation

$$
u(x, y)= \begin{cases}\oint_{\partial D_{1}} P((x, y),(\xi, \eta)) g((\xi, \eta)) d s_{1}, & \text { for }(x, y) \in D_{1} \tag{1}\\ g(x, y), & \text { for }(x, y) \in \partial D_{1}\end{cases}
$$

where $P((x, y),(\xi, \eta))$, for $(x, y) \in D_{1}$ and $(\xi, \eta) \in \partial D_{1}$, is the Poisson kernel for the unit disc, D_{1}, given by

$$
\begin{equation*}
P((x, y),(\xi, \eta))=\frac{1}{2 \pi} \frac{1-|(x, y)|^{2}}{|(x, y)-(\xi, \eta)|^{2}} \tag{2}
\end{equation*}
$$

for $(x, y) \in D_{1}$ and $(\xi, \eta) \in \partial D_{1}$, where $|\cdot|$ denotes the Euclidean norm of vectors in \mathbb{R}^{2}.

In this problem set we will see how to construct a solution of the Dirichlet problem

$$
\left\{\begin{aligned}
u_{x x}+u_{y y} & =0 & & \text { in } \Omega \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial \Omega
\end{aligned}\right.
$$

where $g \in C(\partial \Omega, \mathbb{R})$ is given and Ω is either

$$
D_{R}(0,0)=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<R^{2}\right\}
$$

for $R>0$, or

$$
D_{R}\left(x_{o}, y_{o}\right)=\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}<R^{2}\right\}
$$

for given $\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2}$.

Do the following problems.

1. Let Ω denote an open, bounded subset of \mathbb{R}^{2} that contains the origin $(0,0)$. For $\lambda>0$, define

$$
\Omega_{\lambda}=\left\{(x, y) \in \mathbb{R}^{2} \mid(\lambda x, \lambda y) \in \Omega\right\}
$$

Given $v \in C^{2}(\Omega, \mathbb{R})$, define $u: \Omega_{\lambda} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(x, y)=v(\lambda x, \lambda y), \quad \text { for }(x, y) \in \Omega_{\lambda} \tag{3}
\end{equation*}
$$

(a) Show that Ω_{λ} is an open and bounded subset of \mathbb{R}^{2}.
(b) Let u be as defined in (3). Verify that

$$
u_{x x}+u_{y y}=\lambda^{2}\left(v_{x x}+v_{y y}\right)
$$

Deduce therefore that, if v is harmonic in Ω, then u is harmonic in Ω_{λ}.
2. For $R>0$, define

$$
D_{R}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<R^{2}\right\}
$$

and

$$
\bar{D}_{R}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leqslant R^{2}\right\},
$$

the closure of D_{R}. Suppose that $u \in C^{2}\left(D_{R}, \mathbb{R}\right) \cap C\left(\bar{D}_{R}, \mathbb{R}\right)$ solves the Dirichlet problem

$$
\left\{\begin{align*}
u_{x x}+u_{y y} & =0 & & \text { in } D_{R} \tag{4}\\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial D_{R}
\end{align*}\right.
$$

where $g \in C\left(\partial D_{R}, \mathbb{R}\right)$ is given.
Define $v: \bar{D}_{1} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
v(x, y)=u(R x, R y), \quad \text { for all }(x, y) \in \bar{D}_{1} \tag{5}
\end{equation*}
$$

(a) Verify that the function v defined in (5) solves the Dirichelet problem

$$
\left\{\begin{align*}
v_{x x}+v_{y y} & =0 & & \text { in } D_{1} \tag{6}\\
v(x, y) & =g(R x, R y), & & \text { for }(x, y) \in \partial D_{1}
\end{align*}\right.
$$

(b) Use the Poisson Integral representation for the solution of (6) given in (1) and (2) to obtain an integral representation for a solution, u, of the Dirichlet problem (4).
Suggestion: Let u be a solution of (4); then, for any $(x, y) \in D_{R}$, write

$$
u(x, y)=u\left(R \frac{x}{R}, R \frac{y}{R}\right)=v\left(\frac{x}{R}, \frac{y}{R}\right) .
$$

(c) Give a formula for the Poisson kernel for D_{R}.
3. Let Ω denote an open, bounded subset of \mathbb{R}^{2} that contains the origin $(0,0)$. For $\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2}$, define

$$
\Omega_{\left(x_{o}, y_{o}\right)}=\left\{(x, y)+\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2} \mid(x, y) \in \Omega\right\}
$$

(a) Show that $\Omega_{\left(x_{o}, y_{o}\right)}$ is an open and bounded subset of \mathbb{R}^{2}.
(b) Let $v \in C^{2}(\Omega, \mathbb{R})$ and define

$$
u(x, y)=v\left(x-x_{o}, y-y_{o}\right), \quad \text { for }(x, y) \in \Omega_{\left(x_{o}, y_{o}\right)}
$$

Show that, if v is harmonic in Ω, then u is harmonic in $\Omega_{\left(x_{o}, y_{o}\right)}$
4. For $R>0$ and $\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2}$, define

$$
\Omega=D_{R}\left(x_{o}, y_{o}\right)=\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}<R^{2}\right\}
$$

the disc of radius R centered at $\left(x_{o}, y_{o}\right)$.
(a) Use the result of part (b) in Problem 2 and the result of part (b) in Problem 3 to construct a solution of the Dirichlet problem

$$
\left\{\begin{aligned}
u_{x x}+u_{y y} & =0 & & \text { in } \Omega \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial \Omega
\end{aligned}\right.
$$

for a given $g \in C(\partial \Omega, \mathbb{R})$.
(b) Give a formula for the Poisson kernel of $D_{R}\left(x_{o}, y_{o}\right)$.
5. The Mean-Value Property for Harmonic Functions. Let Ω denote an open subset of \mathbb{R}^{2} and $\left(x_{o}, y_{o}\right) \in \Omega$. Let $r>0$ be such that

$$
\overline{D_{r}\left(x_{o}, y_{o}\right)}=\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2} \leqslant r^{2}\right\} \subset \Omega .
$$

Assume that $u \in C^{2}(\Omega, \mathbb{R})$ is harmonic in Ω.
(a) Use the result Problem 4 to show that

$$
u\left(x_{o} \cdot y_{o}\right)=\frac{1}{2 \pi r} \oint_{\partial D_{r}\left(x_{o}, y_{o}\right)} u(\xi, \eta) d s_{r}
$$

that is, if $u \in C^{2}(\Omega, \mathbb{R})$ is harmonic in Ω, then $u\left(x_{o}, y_{o}\right)$ is the average value of u over any circle centered at $\left(x_{o}, y_{o}\right)$ and contained in Ω.
(b) Use the result from part (a) above to show that

$$
u\left(x_{o} . y_{o}\right)=\frac{1}{\pi R^{2}} \iint_{D_{R}\left(x_{o}, y_{o}\right)} u(x, y) d x d y
$$

for any $R>0$ such that $\overline{D_{R}\left(x_{o}, y_{o}\right)} \subset \Omega$.

