Assignment #7

Due on Friday, April 13, 2018

Read Section 5.4 on *Green's Function* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.5.2 on *Green's Function Method*, pp. 28–33, in *Introduction to Partial Differential Equations and Hilbert Space Methods* by Karl E. Gustafson.

Background and Definitions

The Support of a Function. Given a function $\varphi \colon \mathbb{R}^2 \to \mathbb{R}$, the support of φ , denoted Supp (φ) , is the closure of the set where φ is nonzero; that is,

$$\operatorname{Supp}(\varphi) = \overline{\{(x,y) \in \mathbb{R}^2 \mid \varphi(x,y) \neq 0\}}.$$

If $\operatorname{Supp}(\varphi)$ is also bounded, then it is compact, and we say that φ has **compact** support. Let Ω denote an open subset of \mathbb{R}^2 . We denote by $C_c^{\infty}(\Omega)$ the space of real-valued, C^{∞} functions, $\varphi \colon \mathbb{R}^2 \to \mathbb{R}$, that have compact support contained in Ω .

Do the following problems.

1. Let Ω be an open subset of \mathbb{R}^2 and $u \in C(\Omega, \mathbb{R})$. Let $(x_o, y_o) \in \Omega$ and r > 0 be such that $\overline{D}_r(x_o, y_o) \subset \Omega$. Show that there exists $\omega_r \in [-\pi, \pi]$ such that

$$\oint_{\partial D_r(x_o, y_o)} u(x, y) \, ds = 2\pi r u(x_o + r \cos(\omega_r), y_o + r \sin(\omega_r)),$$

Deduce that $\lim_{r \to 0^+} \frac{1}{2\pi r} \oint_{\partial D_r(x_o, y_o)} u(x, y) \, ds = u(x_o, y_o).$

2. Locally Integrable Functions. Let \mathcal{U} denote an open subset of \mathbb{R}^2 . A function $w: \mathcal{U} \to \mathbb{R} \cup \{-\infty, +\infty\}$ (that is, |w| could be infinite at a point, or points, in \mathcal{U}) is said to be locally integrable in \mathcal{U} if and only if, for every disc, D, such that $\overline{D} \subset \mathcal{U}$,

$$\iint_{\overline{D}} |w| \, dxdy < \infty.$$

Define $W \colon \mathbb{R}^2 \to \mathbb{R} \cup \{-\infty, +\infty\}$ by

$$W(x,y) = \begin{cases} -\frac{1}{2\pi} \ln |(x,y)|, & \text{if } (x,y) \neq (0,0); \\ +\infty, & \text{if } (x,y) = (0,0). \end{cases}$$
(1)

Verify that the function W defined in (1) is locally integrable in \mathbb{R}^2 .

Math 180. Rumbos

- 3. Integration by Parts in Two Dimensions. Let \mathcal{U} denote an open subset of \mathbb{R}^2 and Ω a bounded subset of \mathcal{U} with piecewise C^1 boundary, $\partial\Omega$, and such that $\overline{\Omega} \subset \mathcal{U}$.
 - (a) Let $u, v \in C^1(\mathcal{U}, \mathbb{R})$. Use the divergence theorem to derive the following integration by parts formulas in \mathbb{R}^2 .

$$\iint_{\Omega} u \frac{\partial v}{\partial x} \, dx dy = \oint_{\partial \Omega} u v n_1 \, ds - \iint_{\Omega} \frac{\partial u}{\partial x} v \, dx dy,$$

and

$$\iint_{\Omega} u \frac{\partial v}{\partial y} \, dx dy = \oint_{\partial \Omega} u v n_2 \, ds - \iint_{\Omega} \frac{\partial u}{\partial y} v \, dx dy,$$

where n_1 and n_2 are the components of the outward, unit normal vector $\hat{n} = (n_1, n_2)$ on the boundary, $\partial \Omega$, of Ω .

(b) Show that

$$\iint_{\Omega} u \frac{\partial \varphi}{\partial x} \, dx dy = -\iint_{\Omega} \frac{\partial u}{\partial x} \varphi \, dx dy, \quad \text{ for every } \varphi \in C_c^{\infty}(\Omega),$$

and

$$\iint_{\Omega} u \frac{\partial \varphi}{\partial \varphi} \, dx dy = -\iint_{\Omega} \frac{\partial u}{\partial y} \varphi \, dx dy, \quad \text{ for every } \varphi \in C_c^{\infty}(\Omega).$$

4. Weak Derivatives. Let Ω denote an open subset of \mathbb{R}^2 , and let $w: \Omega \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a locally integrable function. Suppose that there exist locally integrable functions v_1 and v_2 such that

$$\iint_{\Omega} w \frac{\partial \varphi}{\partial x} \, dx dy = -\iint_{\Omega} v_1 \varphi \, dx dy, \quad \text{ for all } \varphi \in C_c^{\infty}(\Omega),$$

and

$$\iint_{\Omega} w \frac{\partial \varphi}{\partial y} \, dx dy = -\iint_{\Omega} v_2 \varphi \, dx dy, \quad \text{ for all } \varphi \in C_c^{\infty}(\Omega)$$

We then say that v_1 and v_2 are **weak partial derivatives** of w. We denote them by $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$, respectively, even though the functions w might not have partial derivatives in the usual sense of Multivariable Calculus.

(a) Let $u \in C^1(\Omega, \mathbb{R})$. Verify that u has weak partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

Math 180. Rumbos

(b) Suppose that a locally integrable function $w: \Omega \to \mathbb{R} \cup \{-\infty, +\infty\}$ has second order, weak partial derivatives. Verify that

$$\iint_{\Omega} w(\Delta \varphi) \ dxdy = \iint_{\Omega} (\Delta w) \varphi \ dxdy, \quad \text{ for all } \varphi \in C^{\infty}_{c}(\Omega),$$

where Δw denotes the weak Laplacian of w.

5. Let \mathcal{U} denote an open subset of \mathbb{R}^2 and Ω a bounded, connected, open subset of \mathcal{U} satisfying $\overline{\Omega} \subset \mathcal{U}$, and having a piecewise C^1 boundary, $\partial \Omega$.

For $(x, y), (\xi, \eta) \in \mathbb{R}^2$ define

$$W((x,y),(\xi,\eta)) = -\frac{1}{2\pi} \ln |(x,y) - (\xi,\eta)|, \text{ provided that } (x,y) \neq (\xi,\eta).$$
(2)

Let $u \in C^2(\mathcal{U}, \mathbb{R})$. In the class lecture notes we derived the following representation formula

$$u(x,y) = -\iint_{\Omega} W((x,y),(\xi,\eta)) \Delta u(\xi,\eta) \ d\xi d\eta + \oint_{\partial\Omega} \left(W((x,y),(\xi,\eta)\frac{\partial u}{\partial n} - u\frac{\partial W((x,y),(\xi,\eta)}{\partial n} \right) \ ds,$$
(3)

where W is defined in (2) and we have written u for $u(\xi, \eta)$ and $\frac{\partial u}{\partial n}$ for $\frac{\partial}{\partial n}[u(\xi, \eta)]$ in the line integral in (3).

(a) Use the representation formula in (3) to show that

$$\iint_{\Omega} W((x,y),(\xi,\eta))(-\Delta\varphi(\xi,\eta)) \ d\xi d\eta = \varphi(x,y), \tag{4}$$

for all $\varphi \in C_c^{\infty}(\Omega)$, where W is as defined in (2).

(b) Use the result of part (b) in Problem 4 to deduce from (4) that

$$\iint_{\Omega} (-\Delta W) \varphi \ d\xi d\eta = \varphi(x, y), \quad \text{for all } \varphi \in C_c^{\infty}(\Omega), \tag{5}$$

where ΔW denotes the weak Laplacian of the function W defined in (2) with respect to the variables ξ and η .

Math 180. Rumbos

Spring 2018 4

The right–hand side of (5) is the definition of the Dirac distribution, $\delta_{(x,y)}$, in the sense that

$$\iint_{\Omega} \delta_{(x,y)}(\xi,\eta)\varphi(\xi,\eta) \ d\xi d\eta = \varphi(x,y), \quad \text{ for all } \varphi \in C_c^{\infty}(\Omega).$$

In this sense, the equation in (5) can be written as

$$\iint_{\Omega} (-\Delta W) \varphi \ d\xi d\eta = \iint_{\Omega} \delta_{(x,y)} \varphi(\xi,\eta) \ d\xi d\eta, \quad \text{for all } \varphi \in C_c^{\infty}(\Omega).$$
(6)

The equation in (6) gives meaning to the statement that W is the weak solution of the equation

$$-\Delta W = \delta_{(x,y)}$$

This is what it means for the function W to be the fundamental solution of Poisson's equation.