Assignment #4

Due on Monday, March 4, 2019

Read Chapter 3, on *Flows*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Let U denote an open subset of \mathbb{R}^N and $F: U \to \mathbb{R}^N$ be a C^1 vector filed. Define $\mathcal{D} \subset \mathbb{R} \times U$ by

$$\mathcal{D} = \{ (t, p) \in \mathbb{R} \times U \mid t \in J_p \},\$$

where J_p denotes the maximal interval of existence for the IVP

$$\begin{cases} \frac{dx}{dt} = F(x);\\ x(0) = p. \end{cases}$$
(1)

• (Flow Maps) The flow map $\theta: \mathcal{D} \to U$ of the vector field F is defined to be

$$\theta(t,p) = u_p(t), \quad \text{for all } (t,p) \in \mathcal{D},$$

where $u_p: J_p \to U$ is the solution to IVP (1)

• (Orbits) Given $p \in U$, the orbit, or trajectory, of the flow, θ , through p is the set, γ_p , defined by

$$\gamma_p = \{ x \in U \mid x = \theta(t, p) \text{ for some } t \in J_p \};$$

in other words, γ_p is the image of the solution, $u_p: J_p \to U$, of the IVP (1). Thus, γ_p is a C^1 curve in U parametrized by $u_p: J_p \to U$. This is what we have been calling the integral curve of F through p.

- Assume that $\theta(t, p)$ is defined for all $t \in \mathbb{R}$ and all $p \in U$. For each $t \in \mathbb{R}$ define $\theta_t \colon U \to U$ by $\theta_t(p) = \theta(t, p)$, for all $p \in U$.
- (Invariant Sets) A subset A of U is said to be invariant under the flow θ if for every $p \in A$, $\theta(t, p) \in A$ for all $t \in J_p$.
- (Fixed Points or Singular Points) A point p in U is said to be a fixed point of the flow θ if $\theta(t, p) = p$ for all $t \in J_p$. Fixed points are also referred to as singular points, or equilibrium points.

Do the following problems

- 1. Let $\theta(t, p)$ denote the flow map of the C^1 vector field $F: U \to \mathbb{R}$. Assume that $\theta(t, p)$ is defined for all $t \in \mathbb{R}$ and all $p \in U$. Prove that:
 - (a) θ_0 is the identity map on U; that is, $\theta(0, p) = p$ for all $p \in U$.
 - (b) For any t and s in \mathbb{R} , $\theta_{t+s} = \theta_t \circ \theta_s$.
 - (c) Deduce from (a) and (b) above that θ_t is invertible for any $t \in \mathbb{R}$.
- 2. Let γ_p denote the orbit through p in U of the flow θ . Prove that

$$q \in \gamma_p \Rightarrow \gamma_p = \gamma_q.$$

Give an interpretation of this result.

3. Let γ_p and γ_q denote the orbits through p and q in U, respectively, of the flow θ . Prove that

$$\gamma_p \cap \gamma_q \neq \emptyset \Rightarrow \gamma_p = \gamma_q.$$

Deduce therefore that distinct orbits do not intersect.

Suggestion: Let $p_o \in \gamma_p \cap \gamma_q$; then, there exist $t_1 \in J_p$ and $t_2 \in J_q$ such that

$$u_p(t_1) = u_q(t_2) = p_o.$$

- 4. Let γ_p denote the orbit through p in U of the flow θ . Prove that γ_p is invariant under the flow.
- 5. Let $p^* \in U$ denote a fixed point of the flow θ . Prove that
 - (a) $F(p^*) = 0$, the zero-vector in \mathbb{R}^N . The point p^* is also referred to as an equilibrium point of the differential equation

$$\frac{dx}{dt} = F(x). \tag{2}$$

- (b) Let $p^* \in U$ and suppose that $F(p^*) = 0$. Compute γ_{p^*} .
- (c) Let A denote the set of equilibrium points of the equation (2). Prove that A is invariant under the flow θ .