Assignment \#5

Due on Monday, April 1, 2019
Read Chapter 4, on Continuous Dynamical Systems, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

Let U denote an open subset of \mathbb{R}^{N} and $F: U \rightarrow \mathbb{R}^{N}$ be a C^{1} vector field. Let J_{p} denote the maximal interval of existence for the IVP

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=F(x) \tag{1}\\
x(0)=p
\end{array}\right.
$$

- (Periodic Solutions) A solution $u: J \rightarrow U$ of the differential equation in (1), which is not an equilibrium solution, is said to be periodic if there exists a positive number, τ, such that

$$
\begin{equation*}
u(t+\tau)=u(t), \quad \text { for all } t \in J \text { with } t+\tau \in J \tag{2}
\end{equation*}
$$

The smallest positive number, τ, for which (2) holds true is called the period of u.

- (Cycles) In this problem set we will look at a condition that will guarantee that the solution to the IVP in (1) is periodic. We will also see that periodic solutions must be defined for all $t \in \mathbb{R}$. If the IVP in (1) has a periodic solution of period $T, u_{p}: \mathbb{R} \rightarrow U$, then the orbit of p, γ_{p}, is a closed curve parametrized by

$$
u_{p}:[0, T] \rightarrow U .
$$

The closed orbit, γ_{p}, is called a cycle.

Do the following problems

1. Let $u_{p}: J_{p} \rightarrow U$ denote the unique solution of the IVP in (1) in the maximal interval of existence J_{p}. Assume that there exist t_{1} and t_{2} in J_{p} such that $t_{1} \neq t_{2}$ and

$$
u_{p}\left(t_{1}\right)=u_{p}\left(t_{2}\right)
$$

Prove that there exists $\tau>0$ such that

$$
\begin{equation*}
u_{p}(t)=u_{p}(t+\tau), \quad \text { for all } t \in J_{p} . \tag{3}
\end{equation*}
$$

2. Let u_{p} and J_{p} be as in Problem 1. Prove that (3) implies that $J_{p}=\mathbb{R}$; that is, $u_{p}(t)$ is defined for all $t \in \mathbb{R}$.

Suggestion: Write $J_{p}=(a, b)$ and assume, by way of contradiction, that $b \in \mathbb{R}$. Let $\left(t_{m}\right)$ be a sequence in (a, b) such that t_{m} increases to b as $m \rightarrow \infty$ and $t_{m}-\tau \in J_{p}$ for all $m \in \mathbb{N}$. Show that $\lim _{m \rightarrow \infty} u_{p}\left(t_{m}\right)$ exists in U.
3. Let u_{p} and J_{p} be as in Problem 1. Assume that p is not an equilibrium point of the system in (1) and define

$$
\begin{equation*}
T=\inf \{\tau>0 \mid \text { (3) holds true }\} \tag{4}
\end{equation*}
$$

Prove that $T>0$ and $u_{p}(t)=u_{p}(t+T)$ for all $t \in \mathbb{R}$.
Suggestion: Argue by contradiction; that is, assume that there exists a sequence, $\left(\tau_{m}\right)$, of positive numbers such that τ_{m} decreases to 0 and

$$
u_{p}\left(t+\tau_{m}\right)=u_{p}(t), \quad \text { for all } t \in \mathbb{R}
$$

Consider $\frac{u_{p}\left(t+\tau_{m}\right)-u_{p}(t)}{\tau_{m}}$ as $m \rightarrow \infty$.
4. Let u_{p} and J_{p} be as in Problem 1. Assume that p is not an equilibrium point of the system in (1), and that $u_{p}: \mathbb{R} \rightarrow U$ is a periodic solution on the IVP in (1). Show that the orbit, γ_{p}, is a cycle.

Suggestion: Let T denote the period of the u_{p}. Show that

$$
u_{p}:[0, T] \rightarrow U
$$

is a parametrization of γ_{p}; that is,

- $u_{p}:[0, T) \rightarrow U$ is one-to-one, and
- $u_{p}([0, T])=\gamma_{p}$.

5. Let $\theta: \mathbb{R} \times U \rightarrow U$ be a dynamical system in U. For $p \in U$, assume that γ_{p} is a cycle. Prove that $\omega\left(\gamma_{p}\right)=\gamma_{p}$, and $\alpha\left(\gamma_{p}\right)=\gamma_{p}$.

Suggestion: Show that $\gamma_{p} \subseteq \omega\left(\gamma_{p}\right)$ and $\omega\left(\gamma_{p}\right) \subseteq \gamma_{p}$.

