Assignment \#6

Due on Monday, April 8, 2019
Read Chapter 4, on Continuous Dynamical Systems, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. For real numbers a and b with $a^{2}+b^{2} \neq 0$, let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
F\binom{x}{y}=\binom{a x-b y}{b x+a y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

(a) Explain why the dynamical system, $\theta(t, p, q)$, for $(t, p, q) \in \mathbb{R}^{3}$ corresponding to the field F exists.
(b) Prove that $(0,0)$ is the only equilibrium point of the field F.
(c) Define $V(x, y)=x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Given $(p, q) \in \mathbb{R}^{2}$ with $(p, q) \neq(0,0)$, define

$$
v(t)=V(\theta(t, p, q)), \quad \text { for all } t \in \mathbb{R} ;
$$

that is, the function v gives the values of V on the orbit $\gamma_{(p, q)}$.
Compute $v^{\prime}(t)$ and deduce from your result that if $a<0$, then V decreases on $\gamma_{(p, q)}$ as t increases. What happens when $a>0$.
(d) Compute the ω-limit sets of $\gamma_{(p, q)}$, for $(p, q) \neq(0,0)$, in the cases $a<0$ and $a>0$.
(e) Compute the α-limit sets of $\gamma_{(p, q)}$, for $(p, q) \neq(0,0)$, in the cases $a<0$ and $a>0$.
2. Assume that $r=r(t)$ and $\theta=\theta(t)$ are differentiable functions of $t \in \mathbb{R}$, and define $x(t)=r(t) \cos \theta(t)$ and $y(t)=r(t) \sin \theta(t)$ for all $t \in \mathbb{R}$. Verify that

$$
\begin{align*}
& \frac{d r}{d t}=\frac{d x}{d t} \cos \theta+\frac{d y}{d t} \sin \theta \tag{1}\\
& \frac{d \theta}{d t}=\frac{1}{r} \frac{d y}{d t} \cos \theta-\frac{1}{r} \frac{d x}{d t} \sin \theta .
\end{align*}
$$

3. Use the transformation equations (1) derived in the previous problem to transform the system

$$
\left\{\begin{align*}
\frac{d x}{d t} & =a x-b y \tag{2}\\
\frac{d y}{d t} & =b x+a y
\end{align*}\right.
$$

into a system involving r and θ.
(a) Solve the system for r and θ.
(b) Based on your formulas for r and θ, write down the general solution to the system (2)
(c) Use your result in the previous part to obtain the dynamical system, $\theta(t, p, q)$, for $(t, p, q) \in \mathbb{R}^{3}$, for the system in (2). Explain why this is the same system as the one mentioned in Part (a) of Problem 1.
4. Assume that $b>0$ and $a \neq 0$ in the two-dimensional system (2).
(a) Based on your solution to the previous problem in terms of r and θ, sketch a possible non-trivial orbit of the system. Compute the α-limit set of the orbit. What is the ω-limit set of the orbit?
(b) Assume that $a<0$ in the two-dimensional system (2). Based on your solution in terms of r and θ resulting from the transformation equations (1), sketch a possible non-trivial orbit of the system. Compute the ω-limit set of the orbit. What is the α-limit set of the orbit?
5. Assume that $b>0$ and $a=0$ in the two-dimensional system (2). Sketch the phase portrait of the system. What can you say about the nontrivial orbits? What do you conclude about the solutions of the system?

