Assignment \#7

Due on Monday, April 15, 2019
Read Chapter 4, on Continuous Dynamical Systems, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Assume that p is not an equilibrium point of the C^{1} field, $F: U \rightarrow \mathbb{R}^{N}$, where U is an open subset of \mathbb{R}^{N}. Prove that if $\gamma_{p}^{+} \cap \gamma_{p}^{-} \neq \emptyset$, then γ_{p} is a cycle.
2. Let U be an open subset of \mathbb{R}^{N} and $F: U \rightarrow \mathbb{R}^{N}$ be a C^{1} vector field. Let $u: \mathbb{R} \rightarrow U$ be a solution of the differential equation

$$
\frac{d x}{d t}=F(x)
$$

Suppose that there exists $q \in U$ such that

$$
\lim _{t \rightarrow \infty} u(t)=q .
$$

Prove that q must be an equilibrium point of F.
Suggestion: Write $F=\left(\begin{array}{c}f_{1} \\ f_{2} \\ \vdots \\ f_{N}\end{array}\right)$, where $f_{j}: U \rightarrow \mathbb{R}$, for $j=1,2, \ldots, N$, are C^{1}
functions. Arguing by contradiction, assume that, for some $j \in\{1,2, \ldots, N\}$, $f_{j}(q) \neq 0$. Note that

$$
u_{j}(t)=u_{j}(0)+\int_{0}^{t} f_{j}(u(\tau)) \mathrm{d} \tau, \quad \text { for all } t \in \mathbb{R}
$$

You will need to show that, if $f_{j}(q) \neq 0$, there exists $\delta>0$ such that

$$
\|x-q\|<\delta_{1} \Rightarrow\left|f_{j}(x)\right|>\frac{\left|f_{j}(q)\right|}{2}
$$

3. Consider the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y+\mu x^{3} \tag{1}\\
\frac{d y}{d t}=-x+\mu y^{3}
\end{array}\right.
$$

where μ is a real parameter. For $(p, q) \in \mathbb{R}^{2}$, let $u_{(p, q)}: J_{(p, q)} \rightarrow \mathbb{R}^{2}$ denote the unique solution of the system in (1) subject to the initial condition

$$
\begin{equation*}
(x(0), y(0))=(p, q), \tag{2}
\end{equation*}
$$

where $J_{(p, q)}$ is the maximal interval of existence.
(a) Show that $(0,0)$ is the only equilibrium point of the system in (1).
(b) Assume that $\mu<0$. Prove that if $\|(p, q)\|<\delta$, for some $\delta>0$, then

$$
\left\|u_{(p, q)}(t)\right\|<\delta, \text { for all } t \in J_{(p, q)} \text { with } t>0
$$

Suggestion: Let $V(x, y)=x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$, and put

$$
v(t)=V\left(u_{(p, q)}(t)\right), \quad \text { for all } t \in J_{(p, q)} .
$$

Show that if $(p, q) \neq(0,0)$, then $v(t)$ decreases as t increases. In other words, V decreases along the orbit $\gamma_{(p, q)}$.
(c) Assume that $\mu<0$. Deduce from Part (b) that, if $\|(p, q)\|<\delta$, then $u_{(p, q)}(t)$ is defined for all $t \geqslant 0$.
4. (Problem 3, Continued) Assume that $\mu<0$ in the system in (1). Prove that, for any $\varepsilon>0$, if $\|(p, q)\|<\varepsilon$, then $\omega\left(\gamma_{(p, q)}\right)=\{(0,0)\}$.
Suggestion: Argue by contradiction following the following outline:
(i) Assume there exists $\varepsilon_{o}>0$ and $\left(p_{o}, q_{o}\right) \neq(0,0)$ such that $\left\|\left(p_{o}, q_{o}\right)\right\|<\varepsilon_{o}$ and $\omega\left(\gamma_{\left(p_{o}, q_{o}\right)}\right) \neq\{(0,0)\}$. Explain why $\omega\left(\gamma_{\left(p_{o}, q_{o}\right)}\right) \neq \emptyset$. Thus, there exists $(\bar{x}, \bar{y}) \in \omega\left(\gamma_{\left(p_{o}, q_{o}\right)}\right)$ with $(\bar{x}, \bar{y}) \neq(0,0)$.
(ii) Put $\theta\left(t, p_{o}, q_{o}\right)=u_{\left(p_{o}, q_{o}\right)}(t)$ for all $t \geqslant 0$. Explain why there exists a sequence of positive numbers, $\left(t_{m}\right)$, such that $t_{m} \rightarrow \infty$ as $m \rightarrow \infty$ and

$$
\lim _{m \rightarrow \infty} \theta\left(t_{m}, p_{o}, q_{o}\right)=(\bar{x}, \bar{y})
$$

(iii) Let $V(x, y)=x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$, and show that

$$
V\left(\theta\left(t, p_{o}, q_{o}\right)\right) \geqslant V(\bar{x}, \bar{y}), \quad \text { for all } t>0
$$

(iv) Show that

$$
V(\theta(t, \bar{x}, \bar{y}))<V(\bar{x}, \bar{y}), \quad \text { for all } t>0
$$

(v) Show that there exists a δ_{1}, such that

$$
\|(p, q)-(\bar{x}, \bar{y})\|<\delta_{1} \Rightarrow V(\theta(t, p, q)<V(\bar{x}, \bar{y}), \quad \text { for all } t>0
$$

(vi) Explain why there exists $M \in \mathbb{N}$ such that

$$
m \geqslant M_{1} \Rightarrow\left\|\theta\left(t_{m}, p_{o}, q_{o}\right)-(\bar{x}, \bar{y})\right\|<\delta_{1} .
$$

(vii) Put $(p, q)=\theta\left(t_{M_{1}}, p_{o}, q_{o}\right)$, where M_{1} is as given in the previous part. Explain why

$$
\theta(t, p, q)=\theta\left(t+t_{M_{1}}, p_{o}, q_{o}\right), \quad \text { for all } t>0
$$

and use this fact to derive a contradiction.
5. Let U be an open subset of \mathbb{R}^{N} and let $V: U \rightarrow \mathbb{R}$ be a C^{2} function. Put $F(x)=-\nabla V(x)$ for all $x \in U$. Assume that V has a (strict) local minimum at $\bar{x} \in U$; that is, there exists $r>0$ such that $\overline{B_{r}(\bar{x})} \subset U$ and

$$
V(\bar{x})<V(y), \quad \text { for all } y \in \overline{B_{r}(\bar{x})} \backslash\{\bar{x}\} .
$$

Assume also that $\overline{B_{r}(\bar{x})} \backslash\{\bar{x}\}$ contains no equilibrium points of F.
(a) Show that \bar{x} is an equilibrium point of the differential equation

$$
\begin{equation*}
\frac{d x}{d t}=F(x) \tag{3}
\end{equation*}
$$

(b) Prove that there exists $\delta>0$ such that, if $p \in B_{\delta}(\bar{x})$, the equation in (3) has a solution, $u_{p}: J_{p} \rightarrow U$, satisfying $u_{p}(0)=p$ and

$$
u_{p}(t) \in \overline{B_{r}(\bar{x})}, \quad \text { for all } t \in J_{p} \cap[0, t)
$$

(c) Let $\delta>0$ be as obtained in part (b). Deduce from the previous part that, if $p \in B_{\delta}(\bar{x}), u_{p}(t)$ is defined for all $t>0$.
(d) Let $\delta>0$ be as obtained in part (b). Prove that, if $p \in B_{\delta}(\bar{x})$, then $\omega\left(\gamma_{p}\right)=\{\bar{x}\}$.

