Assignment #7

Due on Monday, April 15, 2019

Read Chapter 4, on *Continuous Dynamical Systems*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. Assume that p is not an equilibrium point of the C^1 field, $F: U \to \mathbb{R}^N$, where U is an open subset of \mathbb{R}^N . Prove that if $\gamma_p^+ \cap \gamma_p^- \neq \emptyset$, then γ_p is a cycle.
- 2. Let U be an open subset of \mathbb{R}^N and $F: U \to \mathbb{R}^N$ be a C^1 vector field. Let $u: \mathbb{R} \to U$ be a solution of the differential equation

$$\frac{dx}{dt} = F(x).$$

Suppose that there exists $q \in U$ such that

$$\lim_{t\to\infty} u(t) = q$$

Prove that q must be an equilibrium point of F.

Suggestion: Write $F = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix}$, where $f_j \colon U \to \mathbb{R}$, for $j = 1, 2, \dots, N$, are C^1

functions. Arguing by contradiction, assume that, for some $j \in \{1, 2, ..., N\}$, $f_j(q) \neq 0$. Note that

$$u_j(t) = u_j(0) + \int_0^t f_j(u(\tau)) \, \mathrm{d}\tau, \quad \text{for all } t \in \mathbb{R}$$

You will need to show that, if $f_j(q) \neq 0$, there exists $\delta > 0$ such that

$$||x-q|| < \delta_1 \Rightarrow |f_j(x)| > \frac{|f_j(q)|}{2}.$$

Math 181/Math 281. Rumbos

3. Consider the system

$$\begin{cases} \frac{dx}{dt} = y + \mu x^{3}; \\ \frac{dy}{dt} = -x + \mu y^{3}, \end{cases}$$
(1)

where μ is a real parameter. For $(p,q) \in \mathbb{R}^2$, let $u_{(p,q)} \colon J_{(p,q)} \to \mathbb{R}^2$ denote the unique solution of the system in (1) subject to the initial condition

$$(x(0), y(0)) = (p, q), \tag{2}$$

where $J_{(p,q)}$ is the maximal interval of existence.

- (a) Show that (0,0) is the only equilibrium point of the system in (1).
- (b) Assume that $\mu < 0$. Prove that if $||(p,q)|| < \delta$, for some $\delta > 0$, then

 $||u_{(p,q)}(t)|| < \delta$, for all $t \in J_{(p,q)}$ with t > 0.

Suggestion: Let $V(x,y) = x^2 + y^2$ for all $(x,y) \in \mathbb{R}^2$, and put

 $v(t) = V(u_{(p,q)}(t)), \quad \text{for all } t \in J_{(p,q)}.$

Show that if $(p,q) \neq (0,0)$, then v(t) decreases as t increases. In other words, V decreases along the orbit $\gamma_{(p,q)}$.

- (c) Assume that $\mu < 0$. Deduce from Part (b) that, if $||(p,q)|| < \delta$, then $u_{(p,q)}(t)$ is defined for all $t \ge 0$.
- 4. (Problem 3, Continued) Assume that $\mu < 0$ in the system in (1). Prove that, for any $\varepsilon > 0$, if $||(p,q)|| < \varepsilon$, then $\omega(\gamma_{(p,q)}) = \{(0,0)\}.$

Suggestion: Argue by contradiction following the following outline:

- (i) Assume there exists $\varepsilon_o > 0$ and $(p_o, q_o) \neq (0, 0)$ such that $||(p_o, q_o)|| < \varepsilon_o$ and $\omega(\gamma_{(p_o, q_o)}) \neq \{(0, 0)\}$. Explain why $\omega(\gamma_{(p_o, q_o)}) \neq \emptyset$. Thus, there exists $(\overline{x}, \overline{y}) \in \omega(\gamma_{(p_o, q_o)})$ with $(\overline{x}, \overline{y}) \neq (0, 0)$.
- (ii) Put $\theta(t, p_o, q_o) = u_{(p_o, q_o)}(t)$ for all $t \ge 0$. Explain why there exists a sequence of positive numbers, (t_m) , such that $t_m \to \infty$ as $m \to \infty$ and

$$\lim_{m \to \infty} \theta(t_m, p_o, q_o) = (\overline{x}, \overline{y}).$$

(iv) Show that

$$V(\theta(t, \overline{x}, \overline{y})) < V(\overline{x}, \overline{y}), \quad \text{ for all } t > 0.$$

(v) Show that there exists a δ_1 , such that

$$|(p,q) - (\overline{x},\overline{y})|| < \delta_1 \Rightarrow V(\theta(t,p,q) < V(\overline{x},\overline{y})), \text{ for all } t > 0$$

(vi) Explain why there exists $M \in \mathbb{N}$ such that

$$m \ge M_1 \Rightarrow \|\theta(t_m, p_o, q_o) - (\overline{x}, \overline{y})\| < \delta_1.$$

(vii) Put $(p,q) = \theta(t_{M_1}, p_o, q_o)$, where M_1 is as given in the previous part. Explain why

$$\theta(t, p, q) = \theta(t + t_{M_1}, p_o, q_o), \quad \text{for all } t > 0,$$

and use this fact to derive a contradiction.

5. Let U be an open subset of \mathbb{R}^N and let $V: U \to \mathbb{R}$ be a C^2 function. Put $F(x) = -\nabla V(x)$ for all $x \in U$. Assume that V has a (strict) local minimum at $\overline{x} \in U$; that is, there exists r > 0 such that $\overline{B_r(\overline{x})} \subset U$ and

$$V(\overline{x}) < V(y), \quad \text{for all } y \in B_r(\overline{x}) \setminus \{\overline{x}\}.$$

Assume also that $\overline{B_r(\overline{x})} \setminus \{\overline{x}\}$ contains no equilibrium points of F.

(a) Show that \overline{x} is an equilibrium point of the differential equation

$$\frac{dx}{dt} = F(x). \tag{3}$$

(b) Prove that there exists $\delta > 0$ such that, if $p \in B_{\delta}(\overline{x})$, the equation in (3) has a solution, $u_p: J_p \to U$, satisfying $u_p(0) = p$ and

$$u_p(t) \in \overline{B_r(\overline{x})}, \quad \text{for all } t \in J_p \cap [0, t).$$

- (c) Let $\delta > 0$ be as obtained in part (b). Deduce from the previous part that, if $p \in B_{\delta}(\overline{x}), u_p(t)$ is defined for all t > 0.
- (d) Let $\delta > 0$ be as obtained in part (b). Prove that, if $p \in B_{\delta}(\overline{x})$, then $\omega(\gamma_p) = \{\overline{x}\}.$