Assignment \#1

Due on Wednesday, January 30, 2019
Read Chapter 1 in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Chapter 2, Introduction: An Example from Epidemiology, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

In Section 2.1 of the class lecture notes, we derived the Kermack-McKendrick SIR model for the spread of an infections disease in a population,

$$
\left\{\begin{align*}
\frac{d S}{d t} & =-\beta S I \tag{1}\\
\frac{d I}{d t} & =\beta S I-\gamma I \\
\frac{d R}{d t} & =\gamma I
\end{align*}\right.
$$

The quantity $S(t)$ denotes the number of individuals in the population that are susceptible to getting the disease, $I(t)$ is the number of individuals that have contracted the disease and can infect individuals from the susceptible class, and $R(t)$ is the number of individuals in the population that have recovered and are immune to the disease. The positive parameters β and γ are called the infection rate and recovery rate, respectively.

Do the following problems

1. Give units for the parameters β and γ in the SIR system in (1).
2. Let $N(t)=S(t)+I(t)+R(t)$ for all t. Use the equations in (1) to derive the differential equation

$$
\frac{d N}{d t}=0
$$

Deduce that $N(t)$ must be a constant function.
3. Let $S_{o}=S(t)$, the initial number of susceptible individuals in the population and put

$$
\begin{equation*}
R_{o}=\frac{\beta S_{o}}{\gamma} . \tag{2}
\end{equation*}
$$

Give the units for R_{o}.
The constant R_{o} is called the reproduction number.
4. Assume that at time $t=0$, there are is only one infectious individual in the population and no one in the population has acquired immunity. Let N denote the total number of individuals in the population.
(a) Compute S_{o} in terms of N.
(b) Give the reproduction number, R_{o}, in (2) in this situation.
5. Let R_{o} be as computed in Problem 4.
(a) Assume that $R_{o}>1$, and determine the sign of $I^{\prime}(0)$. What do you conclude in this case? Explain the reasoning leading to your conclusion.
(b) Assume that $R_{o}<1$, and determine the sign of $I^{\prime}(0)$. What do you conclude in this case? Explain the reasoning leading to your conclusion.

