Solutions to Assignment \#10

1. A particle moves in the $x y$-plane along a path determined by the parametric equations

$$
\left\{\begin{array}{l}
x=t ; \tag{1}\\
y=t^{3}-t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Compute the velocity and acceleration of the particle.
Solution: The parametric equations in (1) define a path $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\sigma(t)=t \hat{i}+\left(t^{3}-t\right) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

which locates the particle at any time t. Then, the velocity of the particle is

$$
\dot{\sigma}(t)=\hat{i}+\left(3 t^{2}-1\right) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

and its acceleration is

$$
\ddot{\sigma}(t)=6 t \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

2. The acceleration of a particle moving in the $x y$-plane is given $\ddot{\sigma}(t)=-\hat{j}$, for all $t \in \mathbb{R}$. Assume that at time $t=0$ the velocity of the particle is $\dot{\sigma}(0)=\hat{i}$ and the particle is located at the point $(0,4)$.
(a) Determine the velocity of the particle at any time $t \geqslant 0$.

Solution: The vector equation

$$
\ddot{\sigma}(t)=-\hat{j}, \quad \text { for } t \in \mathbb{R}
$$

is equivalent to the system of differential equations

Integrating the equations in (2) yields

$$
\left\{\begin{array}{l}
\dot{x}=c_{1} ; \tag{3}\\
\dot{y}=-t+c_{2},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

where c_{1} and c_{2} are constants of integration.

The initial condition $\dot{\sigma}(0)=\hat{i}$ is equivalent to

$$
\dot{x}(0)=1 \quad \text { and } \quad \dot{y}(0)=0 .
$$

Substituting these into the equations in (3) yields

$$
c_{1}=1 \quad \text { and } \quad c_{2}=0
$$

so that, in view of (3),

$$
\left\{\begin{align*}
\dot{x} & =1 ; \tag{4}\\
\dot{y} & =-t,
\end{align*} \quad \text { for } t \in \mathbb{R} .\right.
$$

Thus, the velocity of the particle is

$$
\dot{\sigma}(t)=\hat{i}-t \hat{j}, \quad \text { for } t \geqslant 0
$$

(b) Determine the path $\sigma(t)$ of the particle for all time $t \geqslant 0$.

Solution: Integrate the equations in (4) to get

$$
\left\{\begin{array}{l}
x(t)=t+c_{1} ; \tag{5}\\
y(t)=-\frac{1}{2} t^{2}+c_{2},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

where c_{1} and c_{2} are constants of integration.
By virtue of the initial condition

$$
x(0)=0 \quad \text { and } \quad y(0)=4
$$

we obtain from (5) that

$$
c_{1}=0 \quad \text { and } \quad c_{2}=4
$$

Consequently, (5) yields the parametric equations

$$
\left\{\begin{array}{l}
x=t \tag{6}\\
y=-\frac{1}{2} t^{2}+4,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Hence, the path of the particle is

$$
\sigma(t)=t \hat{i}+\left(-\frac{1}{2} t^{2}+4\right) \hat{j}, \quad \text { for } t \geqslant 0
$$

(c) Sketch the curve traced by the path σ obtained in part (b).

Solution: From the first equation in (6) we get that $t=x$; substituting this value of t in the second equation in (6) then yields

$$
\begin{equation*}
y=-\frac{1}{2} x^{2}+4 \tag{7}
\end{equation*}
$$

which is the equation of parabola that opens downwards and with vertex at $(0,4)$. A sketch of that parabola is shown in Figure 1.

Figure 1: Sketch of path in Problem 2
(d) Determine the time $t>0$ when the particle is on the x-axis. What are the coordinates of that point?
Solution: The graph of the equation in (7) meets the x-axis when $y=0$; or, when $x= \pm 2 \sqrt{2}$. Thus, according to the first equation in (6 , the time $t>0$ when the particle is on the x-axis is $t=2 \sqrt{2}$. The coordinates of the point of intersection at $(2 \sqrt{2}, 0)$.
3. Assume that acceleration of a particle moving in the plane at any time t is given by $\ddot{\sigma}(t)=\hat{i}+2 \hat{j}$, for all $t \in \mathbb{R}$.
Compute the path σ given that $\sigma(0)=(0,0)$ and $\sigma^{\prime}(0)=\hat{i}+\hat{j}$.
Solution: Let

$$
\sigma(t)=x(t) \hat{i}+y(t) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

where x and y are differentiable functions of t.

We are given that

$$
\ddot{\sigma}(t)=\hat{i}+2 \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

Consequently,

$$
\left\{\begin{array}{l}
\ddot{x}=1 ; \tag{8}\\
\ddot{y}=2,
\end{array} \quad \text { for } t \in \mathbb{R} .\right.
$$

Integrating the equations in (8) yields

$$
\left\{\begin{array}{l}
\dot{x}=t+c_{1} ; \tag{9}\\
\dot{y}=2 t+c_{2},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

where c_{1} and c_{2} are constants of integration.
The initial condition

$$
\dot{\sigma}(0)=\hat{i}+\hat{j}
$$

implies that

$$
\dot{x}(0)=1 \quad \text { and } \quad \dot{y}(0)=1 ;
$$

so, using the equations in (9),

$$
c_{1}=1 \quad \text { and } \quad c_{2}=1
$$

Thus, substituting these into the equations in (9),

$$
\left\{\begin{array}{l}
\dot{x}=t+1 ; \tag{10}\\
\dot{y}=2 t+2,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Integrate the equations in (10) to get

$$
\left\{\begin{array}{l}
x=\frac{1}{2} t^{2}+t+c_{1} ; \tag{11}\\
y=t^{2}+2 t+c_{2}
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

where c_{1} and c_{2} are constants of integration.
The initial condition $\sigma(0)=(0,0)$ is equivalent to

$$
x(0)=0 \quad \text { and } \quad y(0)=0 .
$$

It then follows from (11) that

$$
c_{1}=0 \quad \text { and } \quad c_{2}=0
$$

Substituting these values into (11) then yields

$$
\left\{\begin{array}{l}
x=\frac{1}{2} t^{2}+t ; \\
y=t^{2}+2 t
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

Consequently,

$$
\sigma(t)=\left(\frac{1}{2} t^{2}+t\right) \hat{i}+\left(t^{2}+2 t\right) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

4. Use the law of conservation of momentum to determine the path of a particle that is at the point $(0,1)$ at time $t=0$ and has velocity $\dot{\sigma}(0)=\hat{i}+2 \hat{j}$ at that time, assuming that there no forces act on the particle at any time. Describe and sketch the path.
Solution: In this case, the law of conservation of momentum

$$
m \ddot{\sigma}=F
$$

yields

$$
\begin{equation*}
\ddot{\sigma}=\mathbf{0} \tag{12}
\end{equation*}
$$

since we are assuming that no forces act on the particle at any time t.
Setting

$$
\sigma(t)=x(t) \hat{i}+y(t) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

where x and y are differentiable functions of t. the vector equation in (12) is equivalent to the system of differential equations

$$
\left\{\begin{array}{l}
\ddot{x}=0 ; \tag{13}\\
\ddot{y}=0,
\end{array} \quad \text { for } t \in \mathbb{R} .\right.
$$

Integrating the equations in (13) yields

$$
\left\{\begin{array}{l}
\dot{x}=c_{1} ; \tag{14}\\
\dot{y}=c_{2},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

where c_{1} and c_{2} are constants of integration.
The initial condition

$$
\dot{\sigma}(0)=\hat{i}+2 \hat{j}
$$

implies that

$$
\dot{x}(0)=1 \quad \text { and } \quad \dot{y}(0)=2
$$

so, using the equations in (14),

$$
c_{1}=1 \quad \text { and } \quad c_{2}=2
$$

Thus, substituting these into the equations in (14),

$$
\left\{\begin{align*}
\dot{x}=1 ; \tag{15}\\
\dot{y}=2,
\end{align*} \quad \text { for } t \in \mathbb{R} .\right.
$$

Integrate the equations in (15) to get

$$
\left\{\begin{array}{l}
x=t+c_{1} ; \tag{16}\\
y=2 t+c_{2},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

where c_{1} and c_{2} are constants of integration.
The initial condition $\sigma(0)=(0,1)$ is equivalent to

$$
x(0)=0 \quad \text { and } \quad y(0)=1
$$

It then follows from (16) that

$$
c_{1}=0 \quad \text { and } \quad c_{2}=1
$$

Substituting these values into (16) then yields

Consequently,

$$
\sigma(t)=t \hat{i}+(2 t+1) \hat{j}, \quad \text { for } t \in \mathbb{R},
$$

which we can rewrite as

$$
\sigma(t)=\hat{j}+t(\hat{i}+2 \hat{j}), \quad \text { for } t \in \mathbb{R}
$$

which is the vector-parametric equation of a straight line through the point $(0,1)$ in the direction of the vector $\dot{\sigma}(0)=\hat{i}+2 \hat{j}$. A sketch of this line is shown in Figure 2.

Figure 2: Sketch of path in Problem 4
5. A particle of mass m (in kilograms) is moving along a path in the $x y$-plane given by $\sigma(t)=R \cos (\omega t) \hat{i}+R \sin (\omega t) \hat{j}$, for $t \in \mathbb{R}$, where R is measured in meters and t is measured in seconds.
(a) Compute the velocity and acceleration of the particle at any time t, and sketch them at a point $\sigma(t)$ on the path.
Solution: Given the path $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\begin{equation*}
\sigma(t)=R \cos (\omega t) \hat{i}+R \sin (\omega t) \hat{j}, \quad \text { for } t \in \mathbb{R} \tag{17}
\end{equation*}
$$

compute

$$
\begin{equation*}
\dot{\sigma}(t)=-R \omega \sin (\omega t) \hat{i}+R \omega \cos (\omega t) \hat{j}, \quad \text { for } t \in \mathbb{R} \tag{18}
\end{equation*}
$$

where we have used the Chain-Rule.
Similarly, taking the derivative with respect to t to the velocity vector in (18) yields the acceleration vector

$$
\begin{equation*}
\ddot{\sigma}(t)=-R \omega^{2} \cos (\omega t) \hat{i}-R \omega^{2} \sin (\omega t) \hat{j}, \quad \text { for } t \in \mathbb{R} \tag{19}
\end{equation*}
$$

Note that the acceleration vector in (19) can be written as

$$
\begin{equation*}
\ddot{\sigma}(t)=-\omega^{2} \sigma(t), \quad \text { for } t \in \mathbb{R} \tag{20}
\end{equation*}
$$

where $\sigma(t)$ is the position vector given in (17).
It follows from (20) that the acceleration vector points in a direction opposite that of the position vector. See Figure 3 for a sketch of $\sigma(t), \dot{\sigma}(t)$

Figure 3: Sketch of path in Problem 5
and $\ddot{\sigma}(t)$, for some time t. Observe that the curve in the $x y$-plane traced by the path σ is the circle of radius R centered at the origin.
Note that $\dot{\sigma}(t)$ is perpendicular to $\sigma(t)$. This can be seen to be the case by computing the dot product

$$
\sigma(t) \cdot \dot{\sigma}(t)=0
$$

in view of (17) and (18).
(b) Let $\theta(t)$ denote the angle that $\sigma(t)$ makes with the positive x-axis. Compute $\dot{\theta}$. Give the units of $\dot{\theta}$.
Solution: Using the formula

$$
\sigma(t) \cdot \hat{i}=\|\sigma(t)\|\|\hat{i}\| \cos (\theta(t)), \quad \text { for all } t \in \mathbb{R}
$$

we get that

$$
R \cos (\theta(t))=R \cos (\omega t)
$$

from which we get that

$$
\begin{equation*}
\theta(t)=\omega t+\phi \tag{21}
\end{equation*}
$$

for some constant ϕ.
Taking the derivative with respect to t on both sides of (21) yields

$$
\dot{\theta}=\omega
$$

Consequently, the units of ω are radians per time.
(c) Use the law of conservation of momentum to compute the magnitude and direction of the force acting on the particle at time t.
Solution: The Law of Conservation of Momentum states that

$$
\begin{equation*}
m \ddot{\sigma}=F \tag{22}
\end{equation*}
$$

where m is the mass of the particle and F is the vector sum of the forces acting on the particle.
Combining (20) and (22) we get that

$$
\begin{equation*}
F=-m \omega^{2} \sigma . \tag{23}
\end{equation*}
$$

So that F is parallel to σ and pointing towards the the origin (the center of the circular path).
It follows from (23) that the magnitude of F is

$$
\|F\|=m R \omega^{2}
$$

