Assignment \#11

Due on Friday, March 15, 2019
Read Section 4.3, on Conservation of Momentum, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $x: J \rightarrow \mathbb{R}$ demote a function that is twice-differentiable. Suppose that x solves the second order differential equations

$$
\ddot{x}+a \dot{x}+b x=0,
$$

where a and b are real numbers.
By setting $y(t)=\dot{x}(t)$ for all $t \in J$, verify that the path $\sigma: J \rightarrow \mathbb{R}^{2}$ given by

$$
\sigma(t)=\binom{x(t)}{y(t)}, \quad \text { for } t \in J,
$$

solves the system of first-order differential equations

$$
\left\{\begin{array}{l}
\dot{x}=y ; \\
\dot{y}=-b x-a y .
\end{array}\right.
$$

2. Let a and ω denote a positive numbers, and ϕ denote any real number. Define the path $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
\begin{equation*}
\sigma(t)=a\binom{\sin (\omega t+\phi)}{\omega \cos (\omega t+\phi)}, \quad \text { for } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Verify that $\sigma(t)$ solves the system of differentiable equations

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{2}\\
\dot{y}=-\omega^{2} x .
\end{array}\right.
$$

3. Use the result of Problem 2 to sketch the phase portrait of the system in (2). Consider the three cases: (i) $0<\omega<1$, (ii) $\omega=1$, and (iii) $\omega>1$.
4. Consider the second order differential equation

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x \tag{3}
\end{equation*}
$$

where ω is a positive number.
(a) Assume that $x: \mathbb{R} \rightarrow \mathbb{R}$ is a twice-differentiable function that solves the differential equation in (3), and set $y(t)=\dot{x}(t)$ for all $t \in \mathbb{R}$.
Verify that the path $\sigma: J \rightarrow \mathbb{R}^{2}$ given by

$$
\sigma(t)=\binom{x(t)}{y(t)}, \quad \text { for } t \in R
$$

solves the system of differential equations in (2).
(b) Use the result of Problem 2 to obtain a solution of the second order differential equation (3) subject to the initial conditions $x(0)=x_{o}$ and $\dot{x}(0)=0$, where x_{o} is a positive real number.
Sketch the solution.
5. Consider the second order differential equation

$$
\begin{equation*}
\ddot{x}=a^{2} x \tag{4}
\end{equation*}
$$

where a is a positive number.
Define

$$
\begin{equation*}
x(t)=e^{\lambda t}, \quad \text { for } t \in \mathbb{R} \tag{5}
\end{equation*}
$$

(a) Determine distinct values of λ for which the function x defined in (5) solves the differential equation in (4).
(b) Let λ_{1} and λ_{2} denote the two distinct values of λ obtained in part (a). Verify that the function $u: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
u(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}, \quad \text { for } t \in \mathbb{R}
$$

where c_{1} and c_{2} are constant, solves the differential equation in (4).

