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Solutions to Assignment #11

1. Let x : J → R demote a function that is twice–differentiable. Suppose that x
solves the second order differential equations

ẍ+ aẋ+ bx = 0, (1)

where a and b are real numbers.

By setting y(t) = ẋ(t) for all t ∈ J , verify that the path σ : J → R2 given by

σ(t) =

(
x(t)
y(t)

)
, for t ∈ J, (2)

solves the system of first–order differential equations{
ẋ = y;
ẏ = −bx− ay. (3)

Solution: Compute

ẏ =
d

dt
[ẋ] = ẍ;

so that, using (1),
ẏ = −aẋ− bx,

which is the second equation in (3).

Since, ẋ = y, by the definition of y, the first equation in (3 is also satisfied. It
then follows that the path in (2) solves the system in (3). �

2. Let a and ω denote a positive numbers, and φ denote any real number. Define
the path σ : R→ R2 by

σ(t) = a

(
sin(ωt+ φ)
ω cos(ωt+ φ)

)
, for t ∈ R. (4)

Verify that σ(t) solves the system of differentiable equations{
ẋ = y;
ẏ = −ω2x.

(5)
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Solution: In this case, according to the definition of the path σ in (4),
x(t) = a sin(ωt+ φ);

y(t) = aω cos(ωt+ φ),
for t ∈ R. (6)

Taking the derivative with respect to t on both sides of the first equation in (6),
we have

ẋ(t) = aω cos(ωt+ φ), for t ∈ R;

so that, according to the second equation in (6),

ẋ = y,

which is the first equation in (5).

Next, take the derivative with respect to t on both sides of the second equation
in (6), to get

ẏ(t) = −aω2 sin(ωt+ φ), for t ∈ R;

so that, in view of the first equation of (6),

ẏ = −ω2x,

which is the second equation in (5).

We have therefore shown that the path σ defined in (4) solves the system of
differential equations in (5). �

3. Use the result of Problem 2 to sketch the phase portrait of the system in (5).

Consider the three cases: (i) 0 < ω < 1, (ii) ω = 1, and (iii) ω > 1.

Solution: If a = 0 in the parametric equations in (6), we obtain the equilibrium
solution (0, 0), This solution is sketched in Figure 1, Figure 2 and Figure 3.

Suppose a > 0 in the parametric equations in (6) and divide both equations by
a to get 

x(t)

a
= sin(ωt+ φ);

y(t)

ωa
= cos(ωt+ φ),

for t ∈ R. (7)

Thus, squaring on both sides of the equation in (7) and adding them, we get

x2

a2
+

y2

ω2a2
= 1, (8)
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where we have used the trigonometric identity

cos2A+ sin2A = 1.

The graph of the equation in (8) is a circle of radius a centered at the origin in
the case ω = 1. In the case ω 6= 1, the graph is an ellipse with vertices (−a, 0)
and (a, 0) on the x–axis and vertices (0,−ωa) and (0, ωa) on the y–axis. We
sketch the phase portrait of the system in (5) for each of the cases (i) 0 < ω < 1,
(ii) ω = 1, and (iii) ω > 1, separately

(i) Figure 1 shows a sketch of the phase portrait of the system in (5) for the
case 0 < ω < 1. The sketch also shows the direction along the orbits

x

y

Figure 1: Sketch of phase portrait of the system in (5) for 0 < ω < 1

dictated by the system of differential equations in (5). For instance, in
the first quadrant, since x > 0 and y > 0, we get from the equations in
(5) that ẋ > 0 and ẏ < 0; thus, the direction along the ellipses is in the
clockwise sense.

(ii) In the case ω = 1, the phase portrait of the system in (5) consists of
concentric circles centered at the origin oriented in the clockwise sense. A
sketch of this situation is shown in Figure 2.

(iii) The sketch in Figure 3 shows a few of those ellipses for varies values of
a > 0 in the case ω > 1.

�
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Figure 2: Sketch of phase portrait of the system in (5) for 0ω = 1

4. Consider the second order differential equation

ẍ = −ω2x, (9)

where ω is a positive number.

(a) Assume that x : R → R is a twice–differentiable function that solves the
differential equation in (9), and set y(t) = ẋ(t) for all t ∈ R.

Verify that the path σ : J → R2 given by

σ(t) =

(
x(t)
y(t)

)
, for t ∈ R, (10)

solves the system of differential equations in (5).

Solution: Suppose that x : R→ R is a twice–differentiable function that
solves the differential equation in (9), and set y(t) = ẋ(t) for all t ∈ R.

Compute

ẏ =
d

dt
[ẋ] = ẍ;

so that, in view of (9),
ẏ = −ω2x,

which is the second equation in the system in (5).

Since, ẋ = y, by the definition of y, the first equation in (5) is also satisfied.

Hence, the path σ defined in (10) solves the system of differential equations
in (5). �
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Figure 3: Sketch of phase portrait of the system in (5) for ω > 1

(b) Use the result of Problem 2 to obtain a solution of the second order differ-
ential equation (9) subject to the initial conditions x(0) = xo and ẋ(0) = 0,
where xo is a positive real number.

Sketch the solution.

Solution: This problem can be stated as the following initial value prob-
lem (IVP): 

ẍ = −ω2x;
x(0) = xo;
ẋ(0) = 0.

(11)

Let x denote a solution of the differential equation in (11). By the result
in part (a) of this problem, setting y = ẋ, the path σ defined in (10) solves
the system in (5).

It was shown in Problem 2 that the path

σ(t) =

(
a sin(ωt+ φ)
aω cos(ωt+ φ)

)
, for t ∈ R, (12)



Math 32S. Rumbos Spring 2019 6

solves the system in (5). Thus, a solution of the second–order differential
equation in (11) is given by the first component of the path in (12); namely,

x(t) = a sin(ωt+ φ), for t ∈ R, (13)

where a and φ are constants.

We next determine values of a and φ so that the initial conditions in the
IVP in (11) are satisfied.

From (13) we obtain that

ẋ(t) = aω cos(ωt+ φ), for t ∈ R, (14)

where we have used the Chain Rule.

Substitute 0 for t in (13) and (14), and use the initial conditions in (11)
to get {

a sin(φ) = xo;
aω cos(φ) = 0.

(15)

We first note that a cannot be 0; otherwise, x(t) = 0, for all t, according
to (13), and this is incompatible with the initial condition xo > 0. Hence,
since we are also assuming that ω > 0, we get from the second equation in
(15) that

cos(φ) = 0;

thus, we can take

φ =
π

2
. (16)

Substituting the value of φ in (16) into the first equation in (15) then yields

a = xo. (17)

Substitute the values for a and φ in (17) and (16), respectively, into the
formula for x(t) in (13) to get

x(t) = xo sin
(
ωt+

π

2

)
, for t ∈ R,

which, using the trigonometric identity

sin(A+B) = sinA cosB + cosA sinB,

can be rewritten as

x(t) = xo cos(ωt), for t ∈ R. (18)

A sketch of the function in (18) is shown in Figure 4. �
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Figure 4: Sketch of x as a function of t

5. Consider the second order differential equation

ẍ = a2x, (19)

where a is a positive number.

Define
x(t) = eλt, for t ∈ R. (20)

(a) Determine distinct values of λ for which the function x defined in (20)
solves the differential equation in (19).

Solution: Differentiate the function in (20) with respect to t to get

ẋ(t) = λeλt, for t ∈ R. (21)

Similarly, differentiating the function in (21 with respect to t yields

ẍ(t) = λ2eλt, for t ∈ R. (22)

Next, substitute the functions in (22) and (20) into the second–order dif-
ferential equation in (19) to get

λ2eλt = a2eλt, for t ∈ R;
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so that, since the exponential function is never 0,

λ2 = a2. (23)

The equation in (23) has solutions

λ1 = −a and λ2 = −a. (24)

�

(b) Let λ1 and λ2 denote the two distinct values of λ obtained in part (a).

Verify that the function u : R→ R2 given by

u(t) = c1e
λ1t + c2e

λ2t, for t ∈ R,

where c1 and c2 are constant, solves the differential equation in (19).

Solution: With the values of λ in (24), we have that

u(t) = c1e
−at + c2e

at, for t ∈ R (25)

Differentiate the function u in (25) to get

u̇(t) = −ac1e−at + ac2e
at, for t ∈ R, (26)

where we have used the Chain Rule.

Similarly, differentiating with respect to t the function in (26),

ü(t) = a2c1e
−at + a2c2e

at, for t ∈ R. (27)

Factoring a2 in the right–hand side of (27) we get

ü(t) = a2(c1e
−at + c2e

at), for t ∈ R;

so that, in view of the definition of u in (25),

ü = a2u,

which shows that u solves the differential equation in (19). �


