Assignment \#12
Due on Wednesday, March 27, 2019
Read Chapter 5, on Linear Vector Fields in Two Dimensions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $A$ be the $2 \times 2$ matrix given by $A=\left(\begin{array}{rr}-1 & 1 \\ 5 & -1\end{array}\right)$. Let v and w denote the column vectors $\mathrm{v}=\binom{1}{5} \quad$ and $\quad \mathrm{w}=\binom{1}{1}$. Compute $A \mathrm{v}$ and $A \mathrm{w}$.
2. Let $A, \mathrm{v}$ and w be as in Problem 1. Compute the vector $2 \mathrm{v}-3 \mathrm{w}$ and compute the product $A(2 \mathrm{v}-3 \mathrm{w})$. Verify that

$$
A(2 \mathrm{v}-3 \mathrm{w})=2 A \mathrm{v}-3 A \mathrm{w}
$$

3. Find a condition on the scalars $a, b, c$ and $d$ so that the columns of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

are not scalar multiples of each other; that is the column vectors of $A$ do not lie on the same line.

Suggestion: Consider the cases $a=0$ and $a \neq 0$ separately.
4. Let the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfy the condition you discovered in Problem 3. Show that the matrix equation $A\binom{x}{y}=\binom{0}{0}$ has only one solution; namely, $\binom{x}{y}=\binom{0}{0}$.
5. Let $A$ denote the matrix in Problem 1. Let $\mathrm{v}_{1}$ denote the first column of $A$ and $\mathrm{v}_{2}$ denote the second column of $A$. Find scalars $c_{1}$ and $c_{2}$ for which

$$
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}=\binom{4}{7}
$$

