Solutions to Assignment \#12

1. Let A be the 2×2 matrix given by $A=\left(\begin{array}{rr}-1 & 1 \\ 5 & -1\end{array}\right)$. Let v and w denote the column vectors $\mathrm{v}=\binom{1}{5} \quad$ and $\quad \mathrm{w}=\binom{1}{1}$. Compute $A \mathrm{v}$ and $A \mathrm{w}$.
Solution: Compute

$$
A \mathrm{v}=\left(\begin{array}{rr}
-1 & 1 \\
5 & -1
\end{array}\right)\binom{1}{5}=\binom{4}{0}
$$

and

$$
A \mathrm{w}=\left(\begin{array}{rr}
-1 & 1 \\
5 & -1
\end{array}\right)\binom{1}{1}=\binom{0}{4}
$$

2. Let A, v and w be as in Problem 1. Compute the vector $2 \mathrm{v}-3 \mathrm{w}$ and compute the product $A(2 \mathrm{v}-3 \mathrm{w})$. Verify that

$$
A(2 \mathrm{v}-3 \mathrm{w})=2 A \mathrm{v}-3 A \mathrm{w}
$$

Solution: Compute

$$
\begin{gather*}
2 \mathrm{v}-3 \mathrm{w}=2\binom{1}{5}-3\binom{1}{1} \\
=\binom{2}{10}+\binom{-3}{-3} \\
=\binom{-1}{7} \\
A(2 \mathrm{v}-3 \mathrm{w})=\left(\begin{array}{rr}
-1 & 1 \\
5 & -1
\end{array}\right)\binom{-1}{7}=\binom{8}{-12} \tag{1}
\end{gather*}
$$

and

$$
\begin{aligned}
2 A \mathrm{v}-3 A \mathrm{w} & =2\binom{4}{0}-3\binom{0}{4} \\
& =\binom{8}{0}+\binom{0}{-12}
\end{aligned}
$$

so that,

$$
\begin{equation*}
2 A \mathrm{v}-3 A \mathrm{w}=\binom{8}{-12} \tag{2}
\end{equation*}
$$

Comparing (1) and (2) we see that

$$
A(2 \mathrm{v}-3 \mathrm{w})=2 A \mathrm{v}-3 A \mathrm{w}
$$

3. Find a condition on the scalars a, b, c and d so that the columns of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

are not scalar multiples of each other; that is the column vectors of A do not lie on the same line.

Suggestion: Consider the cases $a=0$ and $a \neq 0$ separately.
Solution: Let

$$
\mathrm{v}_{1}=\binom{a}{c} \quad \text { and } \quad \mathrm{v}_{2}=\binom{b}{d}
$$

Firs, consider the case in which $a \neq 0$ and $b \neq 0$. In this case, the vectors v_{1} and v_{2} do not lie on the same line is the slopes

$$
m_{1}=\frac{c}{a} \quad \text { and } \quad m_{2}=\frac{d}{b}
$$

are not the same; that is,

$$
m_{2} \neq m_{1}
$$

or

$$
\frac{d}{b} \neq \frac{c}{a}
$$

or

$$
a d \neq b d
$$

or

$$
\begin{equation*}
a d-b c \neq 0 \tag{3}
\end{equation*}
$$

Thus, we see that if (3) and $a \neq 0$ and $b \neq 0$, the vectors v_{1} and v_{2} cannot be parallel.
On the other hand, if (3) holds true and $a=0$; then,

$$
\begin{equation*}
b c \neq 0 \tag{4}
\end{equation*}
$$

Thus,

$$
\mathrm{v}_{1}=\binom{0}{c} \quad \text { and } \quad \mathrm{v}_{2}=\binom{b}{d}
$$

where $c \neq 0$ and $b \neq 0$ by virtue of (4). Hence, v_{1} lies along the y-axis and does not, since $b \neq 0$.

By the same token, if (3) holds true and $b=0$, then

$$
\begin{equation*}
a d \neq 0 \tag{5}
\end{equation*}
$$

so that,

$$
a \neq 0 \quad \text { and } \quad d \neq 0
$$

Thus,

$$
\mathrm{v}_{1}=\binom{a}{c} \quad \text { and } \quad \mathrm{v}_{2}=\binom{0}{d}
$$

which implies that v_{2} is parallel to the y-axis, but v_{1} is not.
4. Let the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfy the condition you discovered in Problem 3. Show that the matrix equation $A\binom{x}{y}=\binom{0}{0}$ has only one solution; namely, $\binom{x}{y}=\binom{0}{0}$.
Solution: Assume that the condition (3) holds true; that is, assume that

$$
\begin{equation*}
a d-b c \neq 0 \tag{6}
\end{equation*}
$$

and consider the equation

$$
\begin{equation*}
A\binom{x}{y}=\binom{0}{0} \tag{7}
\end{equation*}
$$

which is equivalent to the system of equations

$$
\left\{\begin{array}{l}
a x+b y=0 \tag{8}\\
c x+d y=0
\end{array}\right.
$$

We consider two cases: (i) $a \neq 0$, and (ii) $a=0$.
(i) If $a \neq 0$, then we can solve the first equation in (8) for x to get

$$
\begin{equation*}
x=-\frac{b}{a} y . \tag{9}
\end{equation*}
$$

Then, substitute the result in (9) into the second equation in (8) to get

$$
c\left(-\frac{b}{a} y\right)+d y=0
$$

which can be rewritten as

$$
\begin{equation*}
\frac{a d-b c}{a} y=0 \tag{10}
\end{equation*}
$$

Since we are assuming that (6) holds true, it follows from (10) that

$$
\begin{equation*}
y=0 \tag{11}
\end{equation*}
$$

Next, substitute the result in (11) into (9) to get

$$
\begin{equation*}
x=0 \tag{12}
\end{equation*}
$$

In view of (11) and (12) we see that, if $a d-b c \neq 0$, then $\binom{x}{y}=\binom{0}{0}$ is the only solution of the equation in (7).
(ii) Suppose that $a=0$ and $a d-b c \neq 0$; so that

$$
b c \neq 0
$$

from which we get that

$$
\begin{equation*}
b \neq 0 \quad \text { and } \quad c \neq 0 . \tag{13}
\end{equation*}
$$

It then follows from the first equation in (8) that

$$
b y=0
$$

so that, by virtue of the first condition in (13),

$$
\begin{equation*}
y=0 \tag{14}
\end{equation*}
$$

Next, substitute the result in (14) into the second equation in (8) that

$$
c x=0
$$

so that, in view of the second condition in (13),

$$
\begin{equation*}
x=0 . \tag{15}
\end{equation*}
$$

Combining (14) and (15) we see that, also in this case, $\binom{x}{y}=\binom{0}{0}$ is the only solution of the equation in (7).
5. Let A denote the matrix in Problem 1. Let v_{1} denote the first column of A and v_{2} denote the second column of A. Find scalars c_{1} and c_{2} for which

$$
\begin{equation*}
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}=\binom{4}{7} \tag{16}
\end{equation*}
$$

Solution: Rewrite the equation in (16) as

$$
c_{1}\binom{-1}{5}+c_{2}\binom{1}{-1}=\binom{4}{7}
$$

or

$$
\binom{-c_{1}}{5 c_{1}}+\binom{c_{2}}{-c_{2}}=\binom{4}{7}
$$

or

$$
\binom{-c_{1}+c_{2}}{5 c_{1}-c_{2}}=\binom{4}{7}
$$

so that, the equation in (16) is equivalent to the system of equations

$$
\left\{\begin{align*}
-c_{1}+c_{2} & =4 \tag{17}\\
5 c_{1}-c_{2} & =7
\end{align*}\right.
$$

Adding the equations in (17) yields

$$
4 c_{1}=11
$$

from which we get that

$$
\begin{equation*}
c_{1}=\frac{11}{4} \tag{18}
\end{equation*}
$$

Substitute the result in (18) into the first equation in (17) yields

$$
-\frac{11}{4}+c_{2}=4
$$

which can be solved for c_{2} to get

$$
c_{2}=\frac{27}{4} .
$$

