Assignment #13

Due on Monday, April 1, 2019

Read Chapter 5, on *Linear Vector Fields in Two Dimensions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. Let A be the 2 × 2 matrix given by $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $ad bc \neq 0$. Set $\Delta = ad - bc$ and define $B = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Verify that AB = BA = I, where I denotes the 2 × 2 identity matrix.
- 2. Let $A = \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix}$. Use the result in Problem 1 to find a matrix *B* such that AB = BA = I, where *I* denotes the 2 × 2 identity matrix.
- 3. Let A be the matrix given in Problem 2. Compute $A^2 2A + 5I$, where I denotes the 2×2 identity matrix.
- 4. Let $A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$, let $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Compute the product Av_1 . What do you conclude?
- 5. Let A and v_1 be as given in Problem 4. Find all vectors $v = \begin{pmatrix} x \\ y \end{pmatrix}$ such that

$$(A-I)\mathbf{v} = \mathbf{v}_1,$$

where I denotes the 2×2 identity matrix.