Assignment \#13

Due on Monday, April 1, 2019
Read Chapter 5, on Linear Vector Fields in Two Dimensions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let A be the 2×2 matrix given by $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a d-b c \neq 0$.

Set $\Delta=a d-b c$ and define $B=\frac{1}{\Delta}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$. Verify that $A B=B A=I$, where I denotes the 2×2 identity matrix.
2. Let $A=\left(\begin{array}{ll}-1 & 4 \\ -2 & 3\end{array}\right)$. Use the result in Problem 1 to find a matrix B such that $A B=B A=I$, where I denotes the 2×2 identity matrix.
3. Let A be the matrix given in Problem 2. Compute $A^{2}-2 A+5 I$, where I denotes the 2×2 identity matrix.
4. Let $A=\left(\begin{array}{rr}0 & -1 \\ 1 & 2\end{array}\right)$, let $\mathrm{v}_{1}=\binom{1}{-1}$. Compute the product $A \mathrm{v}_{1}$. What do you conclude?
5. Let A and v_{1} be as given in Problem 4. Find all vectors $\mathrm{v}=\binom{x}{y}$ such that

$$
(A-I) \mathrm{v}=\mathrm{v}_{1}
$$

where I denotes the 2×2 identity matrix.

