## Assignment \#14

Due on Wednesday, April 10, 2019
Read Section 5.3, on The Flow of TwoDimensional Linear Fields, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $A$ be the $2 \times 2$ matrix and suppose that v is a nonzero vector in $\mathbb{R}^{2}$ such that

$$
\begin{equation*}
A \mathrm{v}=\lambda \mathrm{v} \tag{1}
\end{equation*}
$$

for some scalar $\lambda$.
Define the path $\binom{x}{y}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c e^{\lambda t} \mathrm{v}, \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

where $c$ is scalar constant. Verify that $\binom{x}{y}$ is a solution of the system of first order differential equations

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}, \tag{3}
\end{equation*}
$$

where the dot above the variable name indicates derivative with respect to $t$. Suggestion: Differentiate on both sides of (2) with respect to $t$ and use (1).
Notation. The function in (2) is called a line solution of the system in (3).
2. Let $A$ denote the $2 \times 2$ matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and let $\mathrm{v}_{1}=\binom{1}{-1}$ and $\mathrm{v}_{2}=\binom{1}{1}$
Verify that $A \mathrm{v}_{1}=\lambda_{1} \mathrm{v}_{1}$, where $\lambda_{1}=-1$; and $A \mathrm{v}_{2}=\lambda_{2} \mathrm{v}_{2}$, where $\lambda_{2}=1$.
3. Consider the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y  \tag{4}\\
\frac{d y}{d t}=x
\end{array}\right.
$$

(a) Show that the system in (4) can be written in vector form as in (3) where $A$ is the matrix given in Problem 2.
(b) Let $\mathrm{v}_{1}$ and $\mathrm{v}_{2}$ be the vectors given in Problem 2, $\lambda_{1}=-1$ and $\lambda_{2}=1$. Use the result in Problem 1 to show that

$$
\binom{x_{1}(t)}{y_{1}(t)}=e^{\lambda_{1} t} \mathrm{v}_{1} \quad \text { and } \quad\binom{x_{2}(t)}{y_{2}(t)}=e^{\lambda_{2} t} \mathrm{v}_{2}, \quad \text { for all } t \in \mathbb{R}
$$

define solutions of the system in (4).
4. Let $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ be the paths defined in Problem 3. Verify that the function $\binom{x}{y}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1}\binom{x_{1}(t)}{y_{1}(t)}+c_{2}\binom{x_{2}(t)}{y_{2}(t)}, \quad \text { for all } t \in \mathbb{R}, \tag{5}
\end{equation*}
$$

solves the system in (4).
5. Use the function given in (5) to sketch the flow of the vector field

$$
F\binom{x}{y}=\binom{y}{x}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

