Solutions to Assignment \#14

1. Let A be the 2×2 matrix and suppose that v is a nonzero vector in \mathbb{R}^{2} such that

$$
\begin{equation*}
A \mathrm{v}=\lambda \mathrm{v} \tag{1}
\end{equation*}
$$

for some scalar λ.
Define the path $\binom{x}{y}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c e^{\lambda t} \mathrm{v}, \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

where c is scalar constant. Verify that $\binom{x}{y}$ is a solution of the system of first order differential equations

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y} \tag{3}
\end{equation*}
$$

where the dot above the variable name indicates derivative with respect to t. Suggestion: Differentiate on both sides of (2) with respect to t and use (1).
Notation. The function in (2) is called a line solution of the system in (3).
Solution: Take the derivative with respect to t on both sides of the equation in (2) to get

$$
\begin{aligned}
\binom{\dot{x}(t)}{\dot{y}(t)} & =\frac{d}{d t}\left(c e^{\lambda t} \mathrm{v}\right) \\
& =c \lambda e^{\lambda t} \mathrm{v} \\
& =c e^{\lambda t}(\lambda \mathrm{v})
\end{aligned}
$$

so that, in view of (1),

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=c e^{\lambda t} A \mathrm{v} .
$$

Consequently, using the properties of matrix multiplication,

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=A\left(c e^{\lambda t} \mathrm{v}\right) .
$$

Thus, in view of the definition of $\binom{x(t)}{y(t)}$ in (2),

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=A\binom{x(t)}{y(t)}, \quad \text { for } t \in \mathbb{R},
$$

which shows that the function $\binom{x(t)}{y(t)}$ defined in (2) solves the system of firstorder differential equations given in (3).
2. Let A denote the 2×2 matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and let $\mathrm{v}_{1}=\binom{1}{-1}$ and $\mathrm{v}_{2}=\binom{1}{1}$
Verify that $A \mathrm{v}_{1}=\lambda_{1} \mathrm{v}_{1}$, where $\lambda_{1}=-1$; and $A \mathrm{v}_{2}=\lambda_{2} \mathrm{v}_{2}$, where $\lambda_{2}=1$.
Solution: Compute

$$
\begin{aligned}
A \mathrm{v}_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{-1} \\
& =\binom{-1}{1} \\
& =-\binom{1}{-1}
\end{aligned}
$$

which shows that $A \mathrm{v}_{1}=\lambda_{1} \mathrm{v}_{1}$, where $\lambda_{1}=-1$.
Similarly,

$$
\begin{aligned}
A \mathrm{v}_{2} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1} \\
& =\binom{1}{1}
\end{aligned}
$$

which shows that $A \mathrm{v}_{2}=\lambda_{2} \mathrm{v}_{2}$, where $\lambda_{2}=1$.
3. Consider the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \tag{4}\\
\frac{d y}{d t}=x
\end{array}\right.
$$

(a) Show that the system in (4) can be written in vector form as in (3) where A is the matrix given in Problem 2.
Solution: Write the system (4) in vector form

$$
\binom{\dot{x}}{\dot{y}}=\binom{y}{x},
$$

which can be written in terms of matrix multiplication as

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
0 & 1 \tag{5}\\
1 & 0
\end{array}\right)\binom{x}{y} .
$$

Thus, according to (5), the system in (4) is of the form as (3), where A is the matrix given in Problem 3.
(b) Let v_{1} and v_{2} be the vectors given in Problem 3, $\lambda_{1}=-1$ and $\lambda_{2}=1$. Use the result in Problem 1 to show that

$$
\begin{equation*}
\binom{x_{1}(t)}{y_{1}(t)}=e^{\lambda_{1} t} \mathrm{v}_{1} \quad \text { and } \quad\binom{x_{2}(t)}{y_{2}(t)}=e^{\lambda_{2} t} \mathrm{v}_{2}, \quad \text { for all } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

define solutions of the system in (4).
Solution: Apply the result of Problem 1 to each of the vector-valued functions defined in (6) to get that

$$
\begin{equation*}
\binom{\dot{x}_{1}(t)}{\dot{y}_{1}(t)}=A\binom{x_{1}(t)}{y_{1}(t)} \text { and }\binom{\dot{x}_{2}(t)}{\dot{y}_{2}(t)}=A\binom{x_{2}(t)}{y_{2}(t)}, \text { for all } t \in \mathbb{R}, \tag{7}
\end{equation*}
$$

which shows that the functions defined in (6) solve the system in (4).
4. Let $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$ be the paths defined in Problem 3.

Verify that the function $\binom{x}{y}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1}\binom{x_{1}(t)}{y_{1}(t)}+c_{2}\binom{x_{2}(t)}{y_{2}(t)}, \quad \text { for all } t \in \mathbb{R}, \tag{8}
\end{equation*}
$$

solves the system in (4).
Solution: Take the derivative with respect to t on both sides of the expression in (8) to compute

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=c_{1}\binom{\dot{x}_{1}(t)}{\dot{y}_{1}(t)}+c_{2}\binom{\dot{x}_{2}(t)}{\dot{y}_{2}(t)}, \quad \text { for } t \in \mathbb{R} ;
$$

so that, using (7),

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=c_{1} A\binom{x_{1}(t)}{y_{1}(t)}+c_{2} A\binom{x_{2}(t)}{y_{2}(t)}, \quad \text { for } t \in \mathbb{R} ;
$$

thus, applying the distributive property of matrix multiplication,

$$
\begin{equation*}
\binom{\dot{x}(t)}{\dot{y}(t)}=A\left(c_{1}\binom{x_{1}(t)}{y_{1}(t)}+c_{2}\binom{x_{2}(t)}{y_{2}(t)}\right), \quad \text { for } t \in \mathbb{R} . \tag{9}
\end{equation*}
$$

Comparing (9) and (8), we see that

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=A\binom{x(t)}{y(t)}, \quad \text { for } t \in \mathbb{R}
$$

which shows that the function $\binom{x}{y}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined in (8) solves the system in (4).
5. Use the function given in (8) to sketch the flow of the vector field

$$
\begin{equation*}
F\binom{x}{y}=\binom{y}{x}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} . \tag{10}
\end{equation*}
$$

Solution: Since the vector field in (10) is given by

$$
\begin{equation*}
F\binom{x}{y}=A\binom{x}{y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} \tag{11}
\end{equation*}
$$

where A is the 2×2 matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

It then follows from the results in Problem 2, Problem 3 and Problem 4, that the general solution of the system

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}, \tag{12}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1} e^{\lambda_{1} t} \mathrm{v}_{1}+c_{2} e^{\lambda_{2} t} \mathrm{v}_{2}, \quad \text { for all } t \in \mathbb{R} . \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{v}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathrm{v}_{2}=\binom{1}{1} \tag{14}
\end{equation*}
$$

and the scalars λ_{1} and λ_{2} are given by

$$
\lambda_{1}=-1 \quad \text { and } \quad \lambda_{2}=1
$$

We can then rewrite (13) as

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1} e^{-t} \mathrm{v}_{1}+c_{2} e^{t} \mathrm{v}_{2}, \quad \text { for all } t \in \mathbb{R} \tag{15}
\end{equation*}
$$

where the vectors v_{1} and v_{2} are given in (14).
We can use the expression in (15) for the solutions of the system in (12) to sketch the flow of the vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given in (10).
By taking $c_{1}=c_{2}=0$ in (15), we obtain

$$
\binom{x(t)}{y(t)}=\binom{0}{0}, \quad \text { for all } t \in \mathbb{R}
$$

This is the equilibrium solution at the origin sketched as a dot in Figure 1.
The case $c_{1}=0$ and $c_{2} \neq 0$ yields the solutions

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{2} e^{t} \mathrm{v}_{2}, \quad \text { for all } t \in \mathbb{R} \tag{16}
\end{equation*}
$$

where $c_{2} \neq 0$.
The equation in (16) is the vector-parametric equation of a half-line emanating from the origin in the direction of the vector $\mathrm{v}_{2}=\binom{1}{1}$, in the case $c_{2}>0$, since $e^{t}>0$ for all $t \in \mathbb{R}$. For the case $c_{2}<0$, the half-line parametrized by (16) is in the direction opposite to that of v_{2}. Both trajectories parametrized by (16) point away from the origin since e^{t} increases as t increases. The directions along these trajectories are indicated by arrows on the half-lines shown in Figure 1.
For the case $c_{1} \neq 0$ and $c_{2}=0$, we obtain from (15) the vector-parametric equation

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1} e^{-t} \mathrm{v}_{1}, \tag{17}
\end{equation*}
$$

Figure 1: Sketch of Flow of Vector Field
where $c_{1} \neq 0$.
The equation in (17) parametrizes half-lines in the direction of $\mathrm{v}_{1}=\binom{1}{-1}$, for the case $c_{1}>0$, and in the opposite direction in the case $c_{1}<0$. Both trajectories tend towards the origin because e^{-t} decreases to 0 as t increases. These are sketched in Figure 1.

To sketch the trajectories parametrized by (15) for the case $c_{1} \neq 0$ and $c_{2} \neq 0$, use the directions prescribed by the signs of \dot{x} and \dot{y} given by the differential equations in the system in (4). These directions are shown in the sketch in Figure 1.

