Assignment #15

Due on Monday, April 15, 2019

Read Section 5.4, on *The Flow of TwoDimensional Linear Fields*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. Let A be the 2 × 2 matrix $A = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$. Find all eigenvalues of A and give corresponding eigenvectors.
- 2. Let A be the 2 × 2 matrix $A = \begin{pmatrix} 0 & -4 \\ 1 & 4 \end{pmatrix}$. Find all eigenvalues of A and give corresponding eigenvectors.
- 3. Suppose that a 2 × 2 matrix A has real eigenvalues, λ_1 and λ_2 , with $\lambda_1 \neq \lambda_2$. Let v_1 be an eigenvector corresponding to the eigenvalue λ_1 , and v_2 be an eigenvector corresponding to the eigenvalue λ_2 . Show that v_1 and v_2 cannot be multiples of each other.
- 4. In this problem and the next we come up with solutions to the system

$$\begin{cases} \dot{x} = \alpha x - \beta y; \\ \dot{y} = \beta x + \alpha y, \end{cases}$$
(1)

where $\alpha^2 + \beta^2 \neq 0$ and $\beta \neq 0$.

Make the change of variables $x = r \cos \theta$ and $y = r \sin \theta$.

- (a) Verify that $r^2 = x^2 + y^2$ and $\tan \theta = \frac{y}{x}$, provided that $x^2 + y^2 \neq 0$ and $x \neq 0$.
- (b) Verify that

$$\begin{cases} \dot{r} = \frac{x\dot{x} + y\dot{y}}{r}, \\ \dot{\theta} = \frac{x\dot{y} - y\dot{x}}{r^2}. \end{cases}$$
(2)

- 5. [Problem 4 Continued]
 - (a) Use the result in (2) to transform the system (1) into a system involving r and θ .
 - (b) Solve the system obtained in part (a) of Problem 5 for r and θ .
 - (c) Based on your solution in part (b), give the general solution or the system (1).
 - (d) Sketch the flow of the vector field associated with the system in (1) for $\beta = 1$ and each of the following cases
 - (i) $\alpha < 0;$
 - (ii) $\alpha = 0$; and
 - (iii) $\alpha > 0$.