Assignment \#15

Due on Monday, April 15, 2019
Read Section 5.4, on The Flow of TwoDimensional Linear Fields, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let A be the 2×2 matrix $A=\left(\begin{array}{rr}0 & -2 \\ 1 & 3\end{array}\right)$. Find all eigenvalues of A and give corresponding eigenvectors.
2. Let A be the 2×2 matrix $A=\left(\begin{array}{rr}0 & -4 \\ 1 & 4\end{array}\right)$. Find all eigenvalues of A and give corresponding eigenvectors.
3. Suppose that a 2×2 matrix A has real eigenvalues, λ_{1} and λ_{2}, with $\lambda_{1} \neq \lambda_{2}$. Let v_{1} be an eigenvector corresponding to the eigenvalue λ_{1}, and v_{2} be an eigenvector corresponding to the eigenvalue λ_{2}. Show that v_{1} and v_{2} cannot be multiples of each other.
4. In this problem and the next we come up with solutions to the system

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x-\beta y \tag{1}\\
\dot{y}=\beta x+\alpha y
\end{array}\right.
$$

where $\alpha^{2}+\beta^{2} \neq 0$ and $\beta \neq 0$.
Make the change of variables $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Verify that $r^{2}=x^{2}+y^{2}$ and $\tan \theta=\frac{y}{x}$, provided that $x^{2}+y^{2} \neq 0$ and $x \neq 0$.
(b) Verify that

$$
\left\{\begin{array}{l}
\dot{r}=\frac{x \dot{x}+y \dot{y}}{r} \tag{2}\\
\dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r^{2}}
\end{array}\right.
$$

5. [Problem 4 Continued]
(a) Use the result in (2) to transform the system (1) into a system involving r and θ.
(b) Solve the system obtained in part (a) of Problem 5 for r and θ.
(c) Based on your solution in part (b), give the general solution or the system (1).
(d) Sketch the flow of the vector field associated with the system in (1) for $\beta=1$ and each of the following cases
(i) $\alpha<0$;
(ii) $\alpha=0$; and
(iii) $\alpha>0$.
