Solutions to Assignment \#15

1. Let A be the 2×2 matrix $A=\left(\begin{array}{rr}0 & -2 \\ 1 & 3\end{array}\right)$. Find all eigenvalues of A and give corresponding eigenvectors.
Solution: The characteristic polynomial of A is

$$
p_{A}(\lambda)=\lambda^{2}-3 \lambda+2,
$$

which factors into

$$
p_{A}(\lambda)=(\lambda-1)(\lambda-2) .
$$

Thus, the eigenvalues of A are

$$
\lambda_{1}=1 \quad \text { and } \quad \lambda_{2}=2
$$

To find an eigenvalue corresponding to λ_{1}, solve the system equations

$$
\left(A-\lambda_{1} I\right)\binom{x}{y}=\binom{0}{0},
$$

where I denotes the 2×2 identity matrix, or

$$
\left\{\begin{array}{r}
(0-1) x-2 y=0 \\
x+(3-1) y=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{r}
-x-2 y=0 \\
x+2 y=0
\end{array}\right.
$$

which reduces to the single equation

$$
\begin{equation*}
x+2 y=0 . \tag{1}
\end{equation*}
$$

We find all solutions of the equation in (1) by solving for x,

$$
x=-2 y
$$

and setting $y=-t$, where t is a parameter.
We then have that

$$
\binom{x}{y}=\binom{2 t}{-t}, \quad \text { for } t \in \mathbb{R}
$$

or

$$
\begin{equation*}
\binom{x}{y}=t\binom{2}{-1}, \quad \text { for } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

Taking $t=1$ in (2) yields

$$
\mathrm{v}_{1}=\binom{2}{-1} .
$$

This is an eigenvector corresponding to the eigenvalue $\lambda_{1}=1$.
Similarly, solving the equation

$$
\left(A-\lambda_{2} I\right)\binom{x}{y}=\binom{0}{0}
$$

leads to the system of equations

$$
\left\{\begin{array}{r}
(0-2) x-2 y=0 \\
x+(3-2) y=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{r}
-2) x-2 y=0 \\
x+y=0
\end{array}\right.
$$

which reduces to the equation

$$
\begin{equation*}
x+y=0 . \tag{3}
\end{equation*}
$$

Solve for x in (3),

$$
x=-y,
$$

and set $y=-t$, where t is a parameter, to get the solutions

$$
\begin{equation*}
\binom{x}{y}=t\binom{1}{-1}, \quad \text { for } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

of the equation in (3.
Taking $t=1$ in (4) yields

$$
\mathrm{v}_{2}=\binom{1}{-1}
$$

This is an eigenvector corresponding to the eigenvalue $\lambda_{2}=2$.
2. Let A be the 2×2 matrix $A=\left(\begin{array}{rr}0 & -4 \\ 1 & 4\end{array}\right)$. Find all eigenvalues of A and give corresponding eigenvectors.
Solution: The characteristic polynomial of the matrix A is

$$
p_{A}(\lambda)=\lambda^{2}-\operatorname{trace}(A) \lambda+\operatorname{det}(A),
$$

where $\operatorname{trace}(A)=4$ and $\operatorname{det}(A)=4$. Thus,

$$
p_{A}(\lambda)=\lambda^{2}-4 \lambda+4
$$

which factors into

$$
p_{A}(\lambda)=(\lambda-2)^{2},
$$

Consequently, the matrix A has only one eigenvalue

$$
\lambda=2 .
$$

To find a corresponding eigenvalue, solve the system equations

$$
(A-\lambda I)\binom{x}{y}=\binom{0}{0}
$$

where I denotes the 2×2 identity matrix, or

$$
\left\{\begin{aligned}
(0-2) x-4 y & =0 \\
x+(4-2) y & =0
\end{aligned}\right.
$$

or

$$
\left\{\begin{aligned}
-2 x-4 y & =0 \\
x+2 y & =0
\end{aligned}\right.
$$

which reduces to the single equation

$$
\begin{equation*}
x+2 y=0 \tag{5}
\end{equation*}
$$

We find all solutions of the equation in (5) by solving for x,

$$
x=-2 y
$$

and setting $y=-t$, where t is a parameter.
We then have that

$$
\binom{x}{y}=\binom{2 t}{-t}, \quad \text { for } t \in \mathbb{R}
$$

or

$$
\begin{equation*}
\binom{x}{y}=t\binom{2}{-1}, \quad \text { for } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

Taking $t=1$ in (6) yields

$$
\mathrm{v}=\binom{2}{-1}
$$

This is an eigenvector corresponding to the eigenvalue $\lambda=2$.
3. Suppose that a 2×2 matrix A has real eigenvalues, λ_{1} and λ_{2}, with $\lambda_{1} \neq \lambda_{2}$. Let v_{1} be an eigenvector corresponding to the eigenvalue λ_{1}, and v_{2} be an eigenvector corresponding to the eigenvalue λ_{2}. Show that v_{1} and v_{2} cannot be multiples of each other.

Solution: Assume, to the contrary, that v_{2} is a scalar multiple of v_{1}; so that,

$$
\begin{equation*}
\mathrm{v}_{2}=c \mathrm{v}_{1} \tag{7}
\end{equation*}
$$

for some scalar c. Then,

$$
\begin{equation*}
c \neq 0 \tag{8}
\end{equation*}
$$

otherwise, in view of (7), v_{2} would be the zero vector. But this is impossible because v_{2} is an eigenvector of A.
Multiply both sides of the equation in (7) on the left by the matrix A to get

$$
\begin{gathered}
A \mathrm{v}_{2}=A\left(c \mathrm{v}_{1}\right), \\
A \mathrm{v}_{2}=c A \mathrm{v}_{1}
\end{gathered}
$$

or

$$
\begin{equation*}
\lambda_{2} \mathrm{v}_{2}=c \lambda_{1} \mathrm{v}_{1} \tag{9}
\end{equation*}
$$

because v_{1} is an eigenvector of A corresponding to λ_{1}, and v_{2} is an eigenvector of A corresponding to λ_{2}.
Since we are given that $\lambda_{1} \neq \lambda_{2}$, we may assume that $\lambda_{2} \neq 0$. Thus, we can multiply the equation in (7) by λ_{2} to get

$$
\begin{equation*}
\lambda_{2} \mathrm{v}_{2}=c \lambda_{2} \mathrm{v}_{1} \tag{10}
\end{equation*}
$$

Comparing the equations in (9) and (10) we see that

$$
c \lambda_{2} \mathrm{v}_{1}=c \lambda_{1} \mathrm{v}_{1}
$$

from which we get that

$$
\begin{equation*}
c\left(\lambda_{2}-\lambda_{1}\right) \mathrm{v}_{1}=\mathbf{0} \tag{11}
\end{equation*}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{2}.
Since $\mathrm{v}_{1} \neq \mathbf{0}$ because v_{1} is an eigenvector of A, It follows from (11) that

$$
\begin{equation*}
c\left(\lambda_{2}-\lambda_{1}\right)=0 \tag{12}
\end{equation*}
$$

It follows from (12) and the assumption that $\lambda_{1} \neq \lambda_{2}$ that

$$
c=0
$$

which is in direct contradiction with (8). Therefore, (7) is impossible if v_{1} and v_{2} are eigenvectors of A corresponding to distinct eigenvalues λ_{1} and λ_{2}, respectively.
4. In this problem and the next we come up with solutions to the system

$$
\left\{\begin{array}{l}
\dot{x}=\alpha x-\beta y \tag{13}\\
\dot{y}=\beta x+\alpha y
\end{array}\right.
$$

where $\alpha^{2}+\beta^{2} \neq 0$ and $\beta \neq 0$.
Make the change of variables $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Verify that $r^{2}=x^{2}+y^{2}$ and $\tan \theta=\frac{y}{x}$, provided that $x^{2}+y^{2} \neq 0$ and $x \neq 0$.
Solution: Compute

$$
\begin{aligned}
x^{2}+y^{2} & =(r \cos \theta)^{2}+(r \sin \theta)^{2} \\
& =r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \\
& =r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r^{2},
\end{aligned}
$$

from which we get that

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} . \tag{14}
\end{equation*}
$$

Similarly, assuming that $r \neq 0$ and $x=r \cos \theta \neq 0$,

$$
\begin{aligned}
\frac{y}{x} & =\frac{r \sin \theta}{r \cos \theta} \\
& =\frac{\sin \theta}{\cos \theta} \\
& =\tan \theta
\end{aligned}
$$

from which we get that

$$
\begin{equation*}
\tan \theta=\frac{y}{x}, \quad \text { for } x \neq 0 \text { and } r \neq 0 \tag{15}
\end{equation*}
$$

(b) Verify that

$$
\left\{\begin{array}{l}
\dot{r}=\frac{x \dot{x}+y \dot{y}}{r} \tag{16}\\
\dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r^{2}}
\end{array}\right.
$$

Solution: Take the derivative with respect to t on both sides of the equation in (14), and apply the Chain Rule, to get that

$$
2 r \dot{r}=2 x \dot{x}+2 y \dot{y}
$$

from which we get that

$$
\dot{r}=\frac{x \dot{x}+y \dot{y}}{r}
$$

which is the first equation in (16).
Next, take the derivative with respect to t on both sides of the equation in (15), using the Chain Rule, to get

$$
\begin{equation*}
\left(\sec ^{2} \theta\right) \dot{\theta}=\frac{x \dot{y}-y \dot{x}}{x^{2}} \tag{17}
\end{equation*}
$$

where

$$
\sec ^{2} \theta=1+\tan ^{2} \theta
$$

or, in view of (15),

$$
\begin{aligned}
\sec ^{2} \theta & =1+\frac{y^{2}}{x^{2}} \\
& =\frac{x^{2}+y^{2}}{x^{2}}
\end{aligned}
$$

so that,

$$
\begin{equation*}
\sec ^{2} \theta=\frac{r^{2}}{x^{2}} \tag{18}
\end{equation*}
$$

where we have used (14).
Next, substitute the expression for $\sec ^{2} \theta$ in (18) into the left-hand side of (17) to get

$$
\frac{r^{2}}{x^{2}} \dot{\theta}=\frac{x \dot{y}-y \dot{x}}{x^{2}}
$$

from which we get

$$
\dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r^{2}},
$$

which is the second equation in (16).

5. [Problem 4 Continued]

(a) Use the result in (16) to transform the system (13) into a system involving r and θ.
Solution: Substituting the expressions for \dot{x} and \dot{y} in the system in (13) into the first equation in (16) yields

$$
\begin{aligned}
\dot{r} & =\frac{x(\alpha x-\beta y)+y(\beta x+\alpha y)}{r} \\
& =\frac{\alpha x^{2}-\beta x y+\beta x y+\alpha y^{2}}{r} \\
& =\frac{\alpha\left(x^{2}+y^{2}\right)}{r}
\end{aligned}
$$

so that, in view of (14),

$$
\begin{equation*}
\dot{r}=\alpha r . \tag{19}
\end{equation*}
$$

Next, substitute the expressions for \dot{x} and \dot{y} in the system in (13) into the second equation in (16) to get

$$
\begin{aligned}
\dot{\theta} & =\frac{x(\beta x+\alpha y-y(\alpha x-\beta y)}{r^{2}} \\
& =\frac{\beta x^{2}+\alpha x y-\alpha x y+\beta y^{2}}{r^{2}} \\
& =\frac{\beta\left(x^{2}+y^{2}\right)}{r^{2}}
\end{aligned}
$$

so that, by virtue of (14),

$$
\begin{equation*}
\dot{\theta}=\beta \tag{20}
\end{equation*}
$$

Putting together the equations in (19) and (20) yields the system

$$
\left\{\begin{array}{l}
\dot{r}=\alpha r \tag{21}\\
\dot{\theta}=\beta
\end{array}\right.
$$

(b) Solve the system obtained in part (a) of Problem 5 for r and θ.

Solution: The first differential equation in (21) can be solved by separation of variables to yield

$$
\begin{equation*}
r(t)=C e^{\alpha t}, \quad \text { for } t \in \mathbb{R} \tag{22}
\end{equation*}
$$

where C is a constant of integration.
The second differential equation in in (21) can be integrated to yield

$$
\begin{equation*}
\theta(t)=\beta t+\phi, \quad \text { for } t \in \mathbb{R} \tag{23}
\end{equation*}
$$

where ϕ is a constant of integration.
(c) Based on your solution in part (b), give the general solution or the system (13).

Solution: Using the change of variables $x=r \cos \theta$ and $y=r \sin \theta$, we obtain from (22) and (23) that

$$
\left\{\begin{array}{l}
x(t)=C e^{\alpha t} \cos (\beta t+\phi) ; \\
y(t)=C e^{\alpha t} \sin (\beta t+\phi),
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

which we can write in vector form as

$$
\begin{equation*}
\binom{x(t)}{y(t)}=C e^{\alpha t}\binom{\cos (\beta t+\phi)}{\sin (\beta t+\phi)}, \quad \text { for } t \in \mathbb{R} \tag{24}
\end{equation*}
$$

(d) Sketch the flow of the vector field associated with the system in (13) for $\beta=1$ and each of the following cases
(i) $\alpha<0$;
(ii) $\alpha=0$; and
(iii) $\alpha>0$.

Solution: Setting $\beta=1$ in (24), we obtain

$$
\begin{equation*}
\binom{x(t)}{y(t)}=C e^{\alpha t}\binom{\cos (t+\phi)}{\sin (t+\phi)}, \quad \text { for } t \in \mathbb{R} \tag{25}
\end{equation*}
$$

as the general solution of the system of differential equations in (13).
We sketch a few of the curves parametrized by the vector valued function in (25) for each of the possibilities (i) $\alpha<0$, (ii) $\alpha=0$ and (iii) $\alpha>0$, and various values for C and ϕ.
In all cases,

$$
\begin{equation*}
\left|\binom{x(t)}{y(t)}\right|=r(t)=C e^{\alpha t}, \quad \text { for } t \in \mathbb{R} \tag{26}
\end{equation*}
$$

according to (22).
(i) It follows from (26) that, if $\alpha<0$, the distance from the point $(x(t), y(t))$ in the solution curve to the origin decreases as time increases. At the same time, the angle that the vector from $(0,0)$ to $(x(t), y(t))$ makes with the positive axis also increases according to (23), since we are assuming that $\beta=1$. Hence, in addition to the equilibrium solution at the origin, the solution curves spiral towards the origin in the counterclockwise direction as depicted in Figure 1.
(ii) If $\alpha=0$ in (13), and $\beta=1$, then, according to (22), or (26),

$$
\begin{equation*}
\left|\binom{x(t)}{y(t)}\right|=C, \quad \text { for } t \in \mathbb{R} ; \tag{27}
\end{equation*}
$$

so that, the orbits of the system in (13) in this case include the origin and concentric circles around the origin traversed in the counterclockwise sense. A few of these trajectories are shown in Figure 2.
(iii) In the case $\alpha>0$ and $\beta=1$, the trajectories of the system in (13) include the origin and curves that spiral away from the origin in the counterclockwise sense. A few of these trajectories are sketched in Figure 3.

Figure 1: Sketch of phase portrait of system (13) with $\alpha<0$ and $\beta=1$

Figure 2: Sketch of phase portrait of system (13) with $\alpha=0$ and $\beta=1$

Figure 3: Sketch of phase portrait of system (13) with $\alpha>0$ and $\beta=1$

