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Solutions to Assignment #16

In problems (1)–(5), for the given the two–dimensional, linear system, (a) compute
and sketch line–solutions, if any; (b) sketch the nullclines; (c) sketch the phase por-
trait; and (d) describe the nature of the stability, or unstability, of the origin.

1.

{
ẋ = −2y;
ẏ = x− 3y.

Solution:

(a) Write the system in matrix form(
ẋ
ẏ

)
= A

(
x
y

)
,

where A is the 2× 2 matrix

A =

(
0 −2
1 −3

)
.

The characteristic polynomial of the matrix A is

p
A

(λ) = λ2 + 3λ+ 2,

which factors into
p
A

(λ) = (λ+ 2)(λ+ 1).

Thus, the matrix A has two distinct, real eigenvalues:

λ1 = −2 and λ2 = −1.

Next, we find eigenvectors corresponding to the eigenvalues λ1 and λ2.

To find an eigenvector corresponding to λ1 = −2, compute nontrivial so-
lutions of the system

(A− λ1I)

(
x
y

)
=

(
0
0

)
,

where I is the 2× 2 identity matrix, or{
(0− (−2))x− 2y = 0;
x+ (−3− (−2))y = 0,
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or {
2x− 2y = 0;
x− y = 0,

which reduces to the equation

x− y = 0. (1)

To find solutions of the equation in (1), solve for x,

x = y,

and set y = t, where t is a real parameter. Then, the solutions of (1) are
the vectors (

x
y

)
=

(
t
t

)
, for t ∈ R,

or (
x
y

)
= t

(
1
1

)
, for t ∈ R. (2)

Taking t = 1 in (2) yields the vector

v1 =

(
1
1

)
(3)

which is an eigenvector of the matrix A corresponding to the eigenvalue
λ1 = −2.

To find an eigenvector corresponding to λ1 = −1, compute nontrivial so-
lutions of the system

(A− λ2I)

(
x
y

)
=

(
0
0

)
,

or {
(0− (−1))x− 2y = 0;
x+ (−3− (−1))y = 0,

or {
x− 2y = 0;
x− 2y = 0,

which reduces to the equation

x− 2y = 0. (4)
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To find solutions of the equation in (4), solve for x,

x = 2y,

and set y = t, where t is a real parameter. Then, the solutions of (4) are
the vectors (

x
y

)
=

(
2t
t

)
, for t ∈ R,

or (
x
y

)
= t

(
2
1

)
, for t ∈ R. (5)

Taking t = 1 in (5) yields the vector

v2 =

(
2
1

)
(6)

which is an eigenvector of the matrix A corresponding to the eigenvalue
λ2 = −1.

Thus, the line solutions of the system in this problem are

c1e
−2tv1 and c2e

−tv2, for t ∈ R,

where c1 and c2 are non–zero constants, and v1 and v2 are given in (3) and
(6), respectively. These are sketched in Figure 1 along with the equilibrium
solution (0, 0). Note that the direction of these trajectories along the line
four line–solutions in the figures is towards the origin because e−2t and e−t

decrease to 0 as t increases.

(b) The ẋ = 0–nullcline is the line y = 0 or the x–axis. On this line, the vector
field associated with the system in this problem,

F (x, y) =

(
−2y
x− 3y

)
, (7)

is vertical. This is indicated by the vertical arrows drawn across the x–axis
in Figure 1. Note that the arrows point up for positive values of x, since
the field F in (7) points up for y = 0 and x > 0. By the same token, the
arrows point down for negative values of x.

The ẏ = 0–nullcline of the system in this problem is the line x− 3y = 0,

y =
1

3
x.
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x

y

Figure 1: Sketch of phase portrait of system in Problem 1

This line is sketched as a dotted line in the sketch in Figure 1.

On the ẏ = 0–nullcline, the vector field is horizontal. This is indicated
by the horizontal arrows on the nullcline shown in the figure. Note that,
according to the definition of the field F in (7), the arrows point to the left
above the x–axis (y > 0), and point to the right below the x–axis (y < 0).

(c) To sketch the phase portrait of the system in this problem we use arrows
on the nullclines as guide, as well as the signs of ẋ and ẏ determined by
the differential equations, to sketch a few solution curves. Some of these
trajectories are shoen in Figure 1.

(d) Since the eigenvalues of the matrix for this problem are both negative, the
origin is an asymptotically stable equilibrium point; it is a sink.

�

2.

{
ẋ = −y;
ẏ = x+ 2y.

Solution:
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(a) Write the system in matrix form,(
ẋ
ẏ

)
= A

(
x
y

)
,

where A is the 2× 2 matrix

A =

(
0 −1
1 2

)
. (8)

The characteristic polynomial of the matrix A is

p
A

(λ) = λ2 − 2λ+ 1,

which factors into
p
A

(λ) = (λ− 1)2.

Consequently, the matrix A in (8) has only one eigenvalue,

λ = 1.

Next, we find eigenvectors corresponding to λ = 1 by computing nontrivial
solutions of the system

(A− λI)

(
x
y

)
=

(
0
0

)
,

where I is the 2× 2 identity matrix, or{
(0− 1))x− y = 0;
x+ (2− 1))y = 0,

or {
−x− y = 0;
x+ y = 0,

which reduces to the equation

x+ y = 0. (9)

To compute the solutions of (9), solve for x,

x = −y,
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and set y = −t to get (
x
y

)
=

(
t
−t

)
, for t ∈ R,

or (
x
y

)
= t

(
1
−1

)
, for t ∈ R. (10)

Taking t = 1 in (10) yields the vector

v =

(
1
−1

)
(11)

which is an eigenvector of the matrix A in (8) corresponding to the eigen-
value λ = 1. Hence, the line solutions of the system in this problem are
given by

cetv, for t ∈ R, (12)

for c 6= 0. These solutions, along with the equilibrium solution (0, 0), are
sketched in Figure 2. Note that the trajectories along the line–solutions in

x

y

Figure 2: Sketch of phase portrait of system in Problem 2

(12) tend away from the origin because et increases as t increases.
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(b) The ẋ = 0–nullcline is the line y = 0, or the x–axis. On this line, the
direction of the vector field

F (x, y) =

(
−y

x+ 2y

)
, for (x, y) ∈ R2, (13)

is vertical. This is indicated by the vertical arrows sketched along the x–
axis in the sketch in Figure 2. Note that the arrows point up for x > 0
and down for x < 0.

The ẏ = 0–nullcline is the line x+ 2y = 0, or

y = −1

2
x. (14)

On this line, the vector field in (13) is horizontal.

The line in (14) is sketched in Figure 2 as a doted line with horizontal
arrows across it. The arrows point to the right below the x-axis (for y < 0)
and to the left above the x–axis (for y > 0).

(c) To sketch the phase portrait of the system in this problem, we use the
nullclines sketched in Figure 2, as well as the direction vectors along the
nullclines, to sketch a few possible trajectories of the system; a few of these
are sketched in Figure 2.

(d) Since all the trajectories, other than the equilibrium solution, turn away
from the origin, the equilibrium point (0, 0) is an unstable node.

�

3.

{
ẋ = −x+ 4y;
ẏ = −2x+ 3y.

Solution:

(a) Write the system in matrix form(
ẋ
ẏ

)
= A

(
x
y

)
,

where A is the 2× 2 matrix

A =

(
−1 4
−2 3

)
. (15)
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The characteristic polynomial of the matrix A in (15) is

p
A

(λ) = λ2 − 2λ+ 5,

which we can rewrite as

p
A

(λ) = λ2 − 2λ+ 1 + 4,

or
p
A

(λ) = (λ− 1)2 + 4. (16)

It follows from (16) that the equation

p
A

(λ) = 0

has no real solutions. Hence, the system in this problem does not have line
solutions.

(b) The ẋ = 0–nullcline of the system in this problem is the line

−x+ 4y = 0,

or

y =
1

4
x. (17)

This line is sketched in Figure 3 with the verticals arrows across it indi-
cating the directions of the vector field

F (x, y) =

(
−x+ 4y
−2x+ 3y

)
. (18)

The ẏ = 0–nullcline is the line −2x+ 3y = 0, or

y =
2

3
x. (19)

This line is sketched in Figure 3 along with the horizontal arrows indicating
the direction of the field F in (18).

The directions along the arrows on the nullclines can be determined by
looking at the signs of ẋ and ẏ. These are given by the differential equations
of the system in this problem and are displayed in the sketch in Figure 3.
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x

y

ẋ > 0
ẏ > 0

ẋ > 0
ẏ < 0

ẋ < 0
ẏ < 0

ẋ < 0
ẏ > 0

Figure 3: Sketch of phase portrait of system in Problem 3

(c) The solutions of the equation p
A

(λ) = 0, where p
A

(λ) is given in (16), are
the complex numbers

λ = 1± 2i;

thus, the eigenvalues of the matrix A in (15) are complex with positive
real part. Hence, the trajectories of the system in this problem will spiral
away from the origin in the clockwise direction, as indicated by the arrows
on the nullclines in the sketch in Figure 3. A few of these trajectories are
sketched in the figure.

(d) The origin is unstable; it is a spiral source.

�

4.

{
ẋ = y;
ẏ = −4x.

Solution:

(a) Write the system in vector form(
ẋ
ẏ

)
= A

(
x
y

)
,
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where A is the 2× 2 matrix

A =

(
0 1
−4 0

)
. (20)

The characteristic polynomial of the matrix A in (20) is

p
A

(λ) = λ2 + 4, (21)

which has no real roots. Hence, the matrix A in (20) has no real eigenval-
ues. Consequently, the system in in this problem has not line–solutions.

(b) The ẋ = 0–nullcline is the line y = 0, or the x–axis. This line is sketched in
Figure 4, along with vertical line segments across it indicating the direction

x

y

Figure 4: Sketch of phase portrait of system in Problem 4

of the vector field

F (x, y) =

(
y
−4x

)
. for (x, y) ∈ R2, (22)

along the nullcline. Note that the arrows point down for x > 0, and up for
x < 0.
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The ẏ = 0–nullcline is the line x = 0 (the y–axis). On this line the vector
field in (22) is horizontal. This is indicated in Figure 4 by horizontal
arrows. The arrows point to the right for above the x–axis (y > 0), to the
left below the x–axis (y < 0).

(c) The roots of the characteristic polynomial p
A

(λ) in 21) are the complex
numbers λ = ±2i. Thus, the eigenvalues of the matrix A in (20) are the
purely imaginary numbers ±2i. Since, the real part of the eigenvalues is 0,
and the system in this problem is linear, the trajectories of the system in
this problem are closed curves around the origin. Indeed, the trajectories
are ellipses centered at the origin given by the equation

x2 +
y2

4
= c, (23)

where c is a non–negative constant. These curves have a clockwise orien-
tation according to the directions of the field in (22) along the nullclines.

Note that the solution curves given by the equations in (23) also include
the equilibrium solution, (0, 0), for the case c = 0.

(d) The equilibrium point, (0, 0), of the system in this problem is neutrally
stable; the origin is a center.

�

5.

{
ẋ = −3x+ 5y;
ẏ = −2x+ 3y.

Solution:

(a) Write the system in vector form,(
ẋ
ẏ

)
= A

(
x
y

)
,

where A is the 2× 2 matrix

A =

(
−3 5
−2 3

)
. (24)

The characteristic polynomial of the matrix A in (24) is

p
A

(λ) = λ2 + 1, (25)

which has no real roots. Hence, the matrix A in (24) has no real eigenval-
ues. Consequently, the system in in this problem has not line–solutions.
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(b) The ẋ = 0–nullcline is the line −3x+ 5y = 0, or

y =
3

5
x. (26)

This line is sketched in Figure 5.

x

y

Figure 5: Sketch of phase portrait of system in Problem 5

On the line in (26), the vector field

F (x, y) =

(
−3x+ 5y
−2x+ 3y

)
, for (x, y) ∈ R2, (27)

is vertical. This is indicated by the vertical arrows on in the sketch in
Figure 5. The arrows point down for positive values of x and up for
negative values. To see why this is the case, observe that, on the line in

(26), −3x + 5y = 0; so, we can replace y by
3

5
x in the definition of the

field F in (27) to get

F (x, y) =

(
0

−0.2x

)
, for y =

3

5
x.
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The ẏ = 0–nullcline is the line −2x+ 3y = 0, or

y =
2

3
x. (28)

This line is sketched in Figure 5 along with the horizontal arrows indicating
the direction of the field F in (27). Note that, on the line in (28), the field
is given by

F (x, y) =

(
y/3
0

)
, for y =

2

3
x.

Thus, the arrows on the line in (28) point to the right above the x–axis
(y > 0), and to the left below the x–axis (y < 0).

(c) The roots of the characteristic polynomial p
A

(λ) in 25) are the complex
numbers λ = ±i. Thus, the eigenvalues of the matrix A in (24) are the
purely imaginary numbers ±i. Since, the real part of the eigenvalues is 0,
and the system in this problem is linear, the trajectories of the system in
this problem are ellipses centered at the origin and oriented in the clockwise
sense. A few of these ellipses are sketched in Figure 5.

(d) The equilibrium point, (0, 0), of the system in this problem is neutrally
stable; the origin is a center.

�


