Assignment #17

Due on Wednesday, April 24, 2019

Read Chapter 6, on *Linear Functions and Linear Approximations*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. The expression $f(x,y) = 2 \sqrt{4 x^2 y^2}$ defines a function of two variables
 - (a) Give the domain of f.
 - (b) Sketch a few of the contour curves: f(x, y) = c; indicate values of values c for which contour curves exist.
 - (c) Sketch the graph of f.
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = 4 x^2 y^2$, for all $(x, y) \in \mathbb{R}^2$.
 - (a) Give the domain of f.
 - (b) Sketch a few of the contour curves of the graph of f.
 - (c) Sketch the graph of z = f(x, y).
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = 4 3x 2y, for all $(x, y) \in \mathbb{R}^2$.
 - (a) Give the domain of f.
 - (b) Sketch a few of the contour curves of the graph of f.
 - (c) Sketch the graph of z = f(x, y).
- 4. Suppose that f is a linear function of x and y that has slope 2 in the x direction and slope 3 in the y-direction.
 - (a) Determine the change in z = f(x, y) that a change of 0.5 in x and a change of -0.4 in y produces.
 - (b) If f(5,7) = 2, determine the value of z = f(x, y) when x = 4.9 and y = 7.2.
- 5. The graph of a linear function f is a plane passing through the point (4, 3, -2) in three–dimensional space \mathbb{R}^3 , and having slope 5 in the *x*-direction and slope -3 in the *y*-direction.
 - (a) Determine a formula for computing f(x, y) for all $(x, y) \in \mathbb{R}^2$.
 - (b) Sketch contour lines for the function f.