Solutions to Assignment \#17

1. The expression $f(x, y)=2-\sqrt{4-x^{2}-y^{2}}$ defines a function of two variables
(a) Give the domain of f.

Solution: The value $f(x, y)$ is real provided that $4-x^{2}-y^{2} \geqslant 0$; thus, $\operatorname{Dom}(f)=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leqslant 4\right\}$, the disc of radius 2 around the origin in \mathbb{R}^{2}.
(b) Sketch a few of the contour curves: $f(x, y)=c$; indicate values of values c for which contour curves exist.
Solution: The contour curves are the graphs of the equations

$$
2-\sqrt{4-x^{2}-y^{2}}=c, \quad \text { for } 0 \leqslant c \leqslant 2
$$

or

$$
x^{2}+y^{2}=4-(2-c)^{2}, \quad \text { for } 0 \leqslant c \leqslant 2
$$

Thus the contour curves are concentric circles around the origin of radius ranging from 0 to 2 (these include the origin). A sketch of the contour plot is shown in Figure 1.
(c) Sketch the graph of f.

Solution: The graph of f is the graph of the equation

$$
z=2-\sqrt{4-x^{2}-y^{2}}, \quad \text { for } x^{2}+y^{2} \leqslant 4
$$

which can be rewritten as

$$
\sqrt{4-x^{2}-y^{2}}=2-z
$$

or, squaring on both sides

$$
4-x^{2}-y^{2}=(2-z)^{2}
$$

or

$$
\begin{equation*}
x^{2}+y^{2}+(z-2)^{2}=4 \tag{1}
\end{equation*}
$$

Thus, according to (1), points on the graph of f are at a fixed distance of 2 from the point $(0,0,2)$; that is, the graph of f consists of points on a sphere of radius 2 centered at the point $(0,0,2)$ in three-dimensional space. Since the values of z are restricted to be between 0 and 2 , the graph of f is the lower hemisphere of the sphere pictured in Figure 2.

Figure 1: Contour plot for function in Problem 1
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=4-x^{2}-y^{2}$, for all $(x, y) \in \mathbb{R}^{2}$.
(a) Give the domain of f.

Solution: There is no restriction on the input values that f can take in; thus, $\operatorname{Dom}(f)=\mathbb{R}^{2}$.
(b) Sketch a few of the contour curves of the graph of f.

Solution: The contour curves of the graph of f are graphs of the equations

$$
4-x^{2}-y^{2}=c
$$

or

$$
\begin{equation*}
x^{2}+y^{2}=4-c, \tag{2}
\end{equation*}
$$

for $c \leqslant 4$, in the $x y$-plane. The graphs of the equations in (2) are concentric circles of radius $\sqrt{4-c}$, for $c \leqslant 4$. Some of these circles are shown in Figure 3.

Computed by Wolfram|Alpha

Figure 2: Sketch of graph of $z=2-\sqrt{4-x^{2}-y^{2}}$
(c) Sketch the graph of $z=f(x, y)$.

Solution: Note that the intersection of the graph of $z=f(x, y)$ with the $y z$-pane is a the parabola given by the graph of the equation

$$
z=4-y^{2}
$$

while the intersection with the $x z$-plane is the parabola given by

$$
z=4-x^{2}
$$

The graph of $z=f(x, y)$ is obtained by rotating the graph of any of the parabolic sections about the z-axis. Thus, the graph of $z=f(x, y)$ is a paraboloid of revolution as sketched in Figure 4.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=4-3 x-2 y$, for all $(x, y) \in \mathbb{R}^{2}$.
(a) Give the domain of f.

Answer: $\operatorname{Dom}(f)=\mathbb{R}^{2}$.
(b) Sketch a few of the contour curves of the graph of f.

Solution: The contour curves of the graph of f are straight lines given by

$$
4-3 x-2 y=c
$$

Figure 3: Contour plot for function in Problem 2
or

$$
\begin{equation*}
3 x+2 y=4-c, \tag{3}
\end{equation*}
$$

for $c \in \mathbb{R}$. The lines given in (3) are parallel to each other and have slope $-3 / 2$. Some of these lines are shown in the contour plot in Figure 5 obtained by using Wolfram Alpha.
(c) Sketch the graph of $z=f(x, y)$.

Solution: The graph of

$$
z=4-3 x-2 y
$$

is a plane in \mathbb{R}^{3} with intercepts $(4 / 3,0,0),(0,2,0)$ and $(0,0,4)$. A sketch of the graph of this plane is shown in Figure 6.
4. Suppose that f is a linear function of x and y that has slope 2 in the x direction and slope 3 in the y-direction.

Computed by Wolfram|Alpha

Figure 4: Sketch of graph of $z=4-x^{2}-y^{2}$
(a) Determine the change in $z=f(x, y)$ that a change of 0.5 in x and a change of -0.4 in y produces.
Solution: The function f is given by

$$
f(x, y)=z_{o}+2\left(x-x_{o}\right)+3\left(y-y_{o}\right), \quad \text { for }(x, y) \in \mathbb{R}^{2},
$$

for some real values x_{o}, y_{o} and z_{o}; or, by

$$
\begin{equation*}
f(x, y)=d+2 x+3 y, \quad \text { for }(x, y) \in \mathbb{R}^{2}, \tag{4}
\end{equation*}
$$

for some value d.
Using the formula in (4), we compute

$$
\begin{equation*}
f\left(x_{1}, y_{1}\right)=d+2 x_{1}+3 y_{1}, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(x_{2}, y_{2}\right)=d+2 x_{2}+3 y_{2}, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

Computed by Wolfram|Alpha

Figure 5: Sketch of Contour Plot in Problem 3
for points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively. Setting $z_{1}=f\left(x_{1}, y_{1}\right)$ and $z_{2}=$ $f\left(x_{2}, y_{2}\right)$, and $\Delta z=z_{2}-z_{1}$, the change is z, we get that, by subtracting (5) from (6),

$$
\Delta z=2\left(x_{2}-x_{1}\right)+3\left(y_{2}-y_{1}\right)
$$

or

$$
\begin{equation*}
\Delta z=2 \Delta x+3 \Delta y \tag{7}
\end{equation*}
$$

where $\Delta x=x_{2}-x_{1}$ is the change in x, and $\Delta y=y_{2}-y_{1}$ is the change in y.
Using (7) with $\Delta x=0.5$ and $\Delta y=-0.4$, we get that

$$
\Delta z=2(0.5)+3(-0.4)=-0.2
$$

so that, the change in z is -0.2 .

Computed by Wolfram|Alpha

Figure 6: Sketch of graph of $z=4-2 x-3 y$
(b) If $f(5,7)=2$, determine the value of $z=f(x, y)$ when $x=4.9$ and $y=7.2$. Solution: Use $f(5,7)=2$, together with (4), to determine d in (4) as follows: Solve the equation

$$
d+2(5)+3(7)=2
$$

for d to get

$$
d=-29 .
$$

Then,

$$
\begin{equation*}
f(x, y)=-29+2 x+3 y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} . \tag{8}
\end{equation*}
$$

We can then use (8) to evaluate

$$
f(4.9,7.2)=-29+2(4.9)+3(7.2)=2.4
$$

Alternatively, since the change in x from $(5,7)$ to $(4.9,7.2)$ is -0.1 , and the change in y is 0.2 ,

$$
f(4.9,7.2)=2+2(-0.1)+3(0.2)=2.4 .
$$

5. The graph of a linear function f is a plane passing through the point $(4,3,-2)$ in three-dimensional space \mathbb{R}^{3}, and having slope 5 in the x-direction and slope -3 in the y-direction.
(a) Determine a formula for computing $f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$.

Solution: Use the formula

$$
f(x, y)=z_{o}+a\left(x-x_{o}\right)+b\left(y-y_{o}\right), \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

where $a=5, b=-3$, and $\left(x_{o}, y_{o}, z_{o}\right)=(4,3,-2)$, to get

$$
f(x, y)=-2+5(x-4)+(-3)(y-3), \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

or

$$
\begin{equation*}
f(x, y)=-13+5 x-3 y, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{9}
\end{equation*}
$$

(b) Sketch contour lines for the function f.

Solution: The contour curves of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are the straight lines given by

$$
-13+5 x-3 y=c
$$

where $c \in \mathbb{R}$, or

$$
y=\frac{5}{3} x-\frac{c+13}{3}
$$

that is, parallel lines of slope $5 / 3$. Some of these contour lines are shown in Figure 7 obtained by using Wolfram Alpha.

Computed by Wolfram|Alpha

Figure 7: Sketch of Contour Plot in Problem 5

