Assignment \#18

Due on Friday, April 26, 2019
Read Chapter 6, on Linear Functions and Linear Approximations, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

Linear Functions. A real-valued function $\ell: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be linear if

$$
\ell(x, y)=a x+b y, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

and some real constants a and b.
Affine Functions. A real-valued function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be affine if

$$
f(x, y)=\ell(x, y)+c, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

where ℓ is a linear function and c is a real constant.
Do the following problems

1. Give the formula for computing an affine function, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, whose graph is the plane passing through the points $(0,0,0),(0,2,-1)$ and $(-3,0,4)$.
Sketch the plane.
2. Give the equation for the plane containing the line in the $x y$-plane where $y=1$, and the line in the $x z$-plane where $z=2$.
Sketch the plane.
3. An affine function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by the formula

$$
f(x, y)=d+a x+b y, \quad \text { for all }(x, y) \in \mathbb{R}^{2},
$$

where a, b and d are real numbers.
Determine values for a, b and d so that the graph of $z=f(x, y)$ intersects the $x z$-plane in the line $z=3 x+4$ and it intersects the $y z$-plane in the line $z=y+4$.
4. In each of the following, sketch the graph of $z=f(x, y)$ for the given affine function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) $f(x, y)=2-x-2 y$, for all $(x, y) \in \mathbb{R}^{2}$.
(b) $f(x, y)=4+x-2 y$, for all $(x, y) \in \mathbb{R}^{2}$.
5. An affine function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by the formula

$$
f(x, y)=d+a x+b y, \quad \text { for all }(x, y) \in \mathbb{R}^{2},
$$

where a, b and d are real numbers such that $b \neq 0$.
(a) Verify that the contour curves of f are lines of slope $-a / b$.
(b) Verify that $f(x+b, y-a)=f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$.
(c) Give an interpretation for the results in parts (a) and (b).

