Solutions to Assignment \#18

1. Give the formula for computing an affine function, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, whose graph is the plane passing through the points $(0,0,0),(0,2,-1)$ and $(-3,0,4)$.
Sketch the plane.
Solution: The expression for f is given by

$$
\begin{equation*}
f(x, y)=d+a x+b y, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

where a, b and d are determined by solving the equations

$$
\left\{\begin{align*}
f(0,0) & =0 \tag{2}\\
f(0,2) & =-1 \\
f(-3,0) & =4
\end{align*}\right.
$$

simultaneously.
It follows from (1) and the first equation in (2) that $d=0$; thus, we can rewrite (1) as

$$
\begin{equation*}
f(x, y)=a x+b y, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{3}
\end{equation*}
$$

Next, use (3) to rewrite the last two equations in (2) as

$$
\left\{\begin{aligned}
2 b & =-1 \\
-3 a & =4
\end{aligned}\right.
$$

which can be solved to yield that

$$
\begin{equation*}
b=-\frac{1}{2} \quad \text { and } \quad a=-\frac{4}{3} \tag{4}
\end{equation*}
$$

Combining (3) and (4) yields

$$
\begin{equation*}
f(x, y)=-\frac{4}{3} x-\frac{1}{2} y, \quad \text { for }(x, y) \in \mathbb{R}^{2} \tag{5}
\end{equation*}
$$

A sketch of the graph of f given in (5) is shown in Figure 1.
2. Give the equation for the plane containing the line in the $x y$-plane where $y=1$, and the line in the $x z$-plane where $z=2$.
Sketch the plane.

Computed by Wolfram|Alpha

Figure 1: Sketch of Plane in Problem 1

Solution: The plane is the graph of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
f(x, y)=d+a x+b y, \quad \text { for }(x, y) \in \mathbb{R}^{2}, \tag{6}
\end{equation*}
$$

where a, b and d are to be determined.
Since the section of the plane in the $x y$-plane,

$$
\begin{equation*}
d+a x+b y=0 \tag{7}
\end{equation*}
$$

is the line

$$
\begin{equation*}
y=1 \tag{8}
\end{equation*}
$$

it follows, by comparing (7) and (8) that

$$
\begin{equation*}
a=0 \quad \text { and } \quad-\frac{d}{b}=1 \tag{9}
\end{equation*}
$$

On the other hand, since the section of the plane in the $x z$-plane,

$$
\begin{equation*}
z=d+a x \tag{10}
\end{equation*}
$$

is

$$
\begin{equation*}
z=2 \tag{11}
\end{equation*}
$$

it follows from (9), (10) and (11) that

$$
\begin{equation*}
d=2 \quad \text { and } \quad b=-2 . \tag{12}
\end{equation*}
$$

Combining the results in (12) and (9) with (6) then yields

$$
\begin{equation*}
f(x, y)=2-2 y, \quad \text { for }(x, y) \in \mathbb{R}^{2} . \tag{13}
\end{equation*}
$$

Hence, the equation of the equation for the plane containing the line $y=1$ in the $x y$-plane and the line $z=2$ in the $x z$-plane is

$$
z=2-2 y .
$$

A sketch of the graph of f given in (13) is shown in Figure 2.

Computed by Wolfram|Alpha

Figure 2: Sketch of Plane in Problem 2
3. An affine function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by the formula

$$
\begin{equation*}
f(x, y)=d+a x+b y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{14}
\end{equation*}
$$

where a, b and d are real numbers.
Determine values for a, b and d so that the graph of $z=f(x, y)$ intersects the $x z$-plane in the line $z=3 x+4$ and it intersects the $y z$-plane in the line $z=y+4$.
Solution: We are given that the section of the plane $z=f(x, y)$ in the $x z-$ plane,

$$
\begin{equation*}
z=d+a x \tag{15}
\end{equation*}
$$

is the line

$$
\begin{equation*}
z=3 x+4 \tag{16}
\end{equation*}
$$

Thus, comparing (15) and (16),

$$
\begin{equation*}
a=3 \quad \text { and } \quad d=4 \tag{17}
\end{equation*}
$$

Similarly, since the section of the plane in the $y z$-plane,

$$
\begin{equation*}
z=d+b y \tag{18}
\end{equation*}
$$

is the line

$$
\begin{equation*}
z=y+4 \tag{19}
\end{equation*}
$$

by comparing (18) and (19), we get that

$$
\begin{equation*}
b=1 . \tag{20}
\end{equation*}
$$

Putting together the results in (17) and (20), we obtain that

$$
a=3, \quad b=1 \quad \text { and } \quad d=4
$$

4. In each of the following, sketch the graph of $z=f(x, y)$ for the given affine function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) $f(x, y)=2-x-2 y$, for all $(x, y) \in \mathbb{R}^{2}$.

Solution: A sketch of the plane $z=2-x-2 y$ is shown in Figure 3.
(b) $f(x, y)=4+x-2 y$, for all $(x, y) \in \mathbb{R}^{2}$.

Solution: A sketch of the plane $z=4+x-2 y$ is shown in Figure 4.

Computed by Wolfram|Alpha

Figure 3: Sketch of Plane $z=2-x-2 y$
5. An affine function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by the formula

$$
\begin{equation*}
f(x, y)=d+a x+b y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{21}
\end{equation*}
$$

where a, b and d are real numbers such that $b \neq 0$.
(a) Verify that the contour curves of f are lines of slope $-a / b$.

Solution: The contour curves of the function f given in (21) are the graphs of the equations

$$
d+a x+b y=c
$$

or

$$
a x+b y=c-d,
$$

for $c \in \mathbb{R}$; so that, if $b \neq 0$, the contour curves are the lines

$$
y=-\frac{a}{b} x+\frac{c-d}{b},
$$

which have slope $-a / b$.

Computed by Wolfram|Alpha

Figure 4: Sketch of Plane $z=4+x-2 y$
(b) Verify that $f(x+b, y-a)=f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$.

Solution: Use (21) to compute

$$
\begin{aligned}
f(x+b, y-a) & =d+a(x+b)+b(y-a) \\
& =d+a x+a b+b y-b a \\
& =d+a x+b y \\
& =f(x, y),
\end{aligned}
$$

which was to be shown.
(c) Give an interpretation for the results in parts (a) and (b).

Solution: The points (x, y) and $(x+b, y-a)$ lie on a line of slope $-a / b$; hence, the points (x, y) and $(x+b, y-a)$ lie on the same contour curve of the function f. Consequently, $f(x+b, y-a)$ and $f(x, y)$ have the same value.

