Solutions to Assignment \#19

1. Compute the first partial derivatives of the function f given by

$$
f(x, y)=\frac{x}{x^{2}+y^{2}}, \quad \text { for }(x, y) \neq(0,0)
$$

Solution: Apply the Quotient Rule to compute, for $(x, y) \neq(0,0)$,

$$
\begin{aligned}
\frac{\partial f}{\partial x}(x, y) & =\frac{\left(x^{2}+y^{2}\right)(1)-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

so that

$$
\frac{\partial f}{\partial x}(x, y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad \text { for }(x, y) \neq(0,0)
$$

Similarly, for $(x, y) \neq(0,0)$,

$$
\begin{aligned}
\frac{\partial f}{\partial y}(x, y) & =\frac{\left(x^{2}+y^{2}\right)(0)-x(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

so that,

$$
\frac{\partial f}{\partial y}(x, y)=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \quad \text { for }(x, y) \neq(0,0)
$$

2. Compute the first partial derivatives of the function f given by

$$
f(x, y)=e^{-x} \sin y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

Solution: Compute

$$
\begin{equation*}
\frac{\partial f}{\partial x}(x, y)=-e^{-x} \sin y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial y}(x, y)=e^{-x} \cos y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

3. Find a function f of the variables x and y satisfying

$$
\left\{\begin{align*}
\frac{\partial f}{\partial x}(x, y) & =y+2 x \tag{3}\\
\frac{\partial f}{\partial y}(x, y) & =x
\end{align*}\right.
$$

for all $(x, y) \in \mathbb{R}^{2}$.
Solution: Integrate on both sides of the first equation in (3) with respect to x to obtain that

$$
\begin{equation*}
f(x, y)=x y+x^{2}+g(y) \tag{4}
\end{equation*}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function.
Next, differentiate with respect to y on both sides of (4) to get

$$
\begin{equation*}
\frac{\partial f}{\partial y}=x+g^{\prime}(y) \tag{5}
\end{equation*}
$$

Comparing (5) and the second equation in (3) we see that

$$
g^{\prime}(y)=0, \quad \text { for all } y \in \mathbb{R}
$$

from which we get that

$$
\begin{equation*}
g(y)=c \quad(\text { a constant }), \quad \text { for all } y \in \mathbb{R} \tag{6}
\end{equation*}
$$

It then follows from (4) and (6)

$$
f(x, y)=x y+x^{2}+c, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

where c is a constant.
4. Let f be as in Problem 2.

Compute the second partial derivatives of f :

$$
\frac{\partial^{2} f}{\partial x^{2}}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y \partial x} \quad \text { and } \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

Solution: Differentiate on both sides of (1) with respect to x to get

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}(x, y)=e^{-x} \sin y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{7}
\end{equation*}
$$

Differentiate on both sides of (1) with respect to y to get

$$
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=-e^{-x} \cos y, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Differentiate on both sides of (2) with respect to x to get

$$
\frac{\partial^{2} f}{\partial x \partial y}(x, y)=-e^{-x} \cos y, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Differentiate on both sides of (2) with respect to y to get

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y^{2}}(x, y)=-e^{-x} \sin y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{8}
\end{equation*}
$$

5. Let $f(x, y)=e^{-x} \cos y$ for all $(x, y) \in \mathbb{R}^{2}$.

Verify that

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Solution: Compute the partial derivatives of f to get

$$
\begin{equation*}
\frac{\partial f}{\partial x}(x, y)=-e^{-x} \cos y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial y}(x, y)=-e^{-x} \sin y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{10}
\end{equation*}
$$

Take the partial derivative with respect to x on both sides of (9) to get

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}(x, y)=e^{-x} \cos y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{11}
\end{equation*}
$$

Take the partial derivative with respect to y on both sides of (10) to get

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y^{2}}(x, y)=-e^{-x} \cos y, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{12}
\end{equation*}
$$

Add the results in (11) and (12) to get that

$$
\frac{\partial^{2} f}{\partial x^{2}}(x, y)+\frac{\partial^{2} f}{\partial y^{2}}(x, y)=e^{-x} \cos y-e^{-x} \cos y=0
$$

for all $(x, y) \in \mathbb{R}^{2}$, which was to be shown.

