Assignment \#2

Due on Wednesday, February 6, 2019
Read Section 3.1, on Parametrized Curves in the Plane, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. A curve C in the $x y$-plane is parametrized by the equations

$$
x(t)=t+2 \quad \text { and } \quad y(t)=-t+1, \quad \text { for } t \in \mathbb{R}
$$

Sketch the graph of C.
2. A curve C in the $x y$-plane is parametrized by the equations

$$
x(t)=\cos t \quad \text { and } \quad y(t)=\sin t, \quad \text { for } 0 \leqslant t \leqslant \pi
$$

Sketch the graph of C.
3. Suppose that $(x(t), y(t))$ solves the system of differential equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 \\
\frac{d y}{d t}=1
\end{array}\right.
$$

subject to the initial conditions $x(0)=x_{o}$ and $y(0)=y_{o}$, for some given real numbers x_{o} and y_{o}.
Find $x(t)$ and $y(t)$, for all t, and sketch the graph of the parametrized curve that these functions determine.
4. For each of the given parametrized curves, $(x(t), y(t))$, compute the derivatives $\left(x^{\prime}(t), y^{\prime}(t)\right)$.
(a) $(x(t), y(t))=\left(t, t^{2}\right)$, for all $t \in \mathbb{R}$.
(b) $(x(t), y(t))=(t \cos t, t \sin t)$, for all $t \in \mathbb{R}$.
5. Given that $\left(x^{\prime}(t), y^{\prime}(t)\right)=(1,2 t)$, for all t, and that $(x(0), y(0))=(1,1)$, compute $(x(t), y(t))$, for all $t \in \mathbb{R}$, and sketch the graph of the parametrized curve.

