Assignment \#20

Due on Wednesday, May 1, 2019
Read Section 6.2, on Linear Approximations, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 6.3, on Linear Approximations and Partial Derivatives, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 6.4, on Partial Derivatives and the Gradient, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

- Linear approximation of a real valued function of two variables. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y-$ plane, and let $\left(x_{o}, y_{o}\right)$ denote a point in D. Suppose that the partial derivatives of f exist and are continuous in D. The linear approximation for f at $\left(x_{o}, y_{o}\right)$ is the affine function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by
$L(x, y)=f\left(x_{o}, y_{o}\right)+\frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot\left(x-x_{o}\right)+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot\left(y-y_{o}\right), \quad$ for $(x, y) \in \mathbb{R}^{2}$.
$L(x, y)$ approximates $f(x, y)$ when (x, y) is very close to $\left(x_{o}, y_{o}\right)$. We write

$$
f(x, y) \approx f\left(x_{o}, y_{o}\right)+\frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot\left(x-x_{o}\right)+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot\left(y-y_{o}\right)
$$

for (x, y) in D sufficiently close to $\left(x_{o}, y_{o}\right)$.

- The gradient of a function of two variables. Let $f: D \rightarrow \mathbb{R}$ where $D \subseteq \mathbb{R}^{2}$. Suppose that the partial derivatives of f exist in D. The gradient of f, denoted by ∇f, is the vector valued function $\nabla f: D \rightarrow \mathbb{R}^{2}$ defined by $\nabla f(x, y)=$ $\frac{\partial f}{\partial x}(x, y) \hat{i}+\frac{\partial f}{\partial y}(x, y) \hat{j}$, for $(x, y) \in D$.

Do the following problems

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\frac{1}{2} x^{2}+2 y^{2}$, for $(x, y) \in \mathbb{R}^{2}$.
(a) Compute the gradient of f for all $(x, y) \in \mathbb{R}^{2}$.
(b) Give the linear approximation to f for (x, y) near $(2,1)$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\sqrt{x^{2}+y^{2}}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

(a) Give the linear approximation to f near the point $(3,4)$.
(b) Use the linear approximation to f at $(3,4)$ to estimate $f(2.98,4.01)$.
3. Assume that the temperature in an unevenly heated plate is given by $T(x, y)$ ${ }^{\circ} \mathrm{C}$ at every point (x, y) in the plate, where T is a function of two variables with continuous partial derivatives T_{x} and T_{y}. Assume that $T(2,1)=135^{\circ} \mathrm{C}$, and that the partial derivatives of T at $(2,1)$ have values $T_{x}(2,1)=16$ and $T_{y}(2,1)=-15$. Estimate the temperature at the point $(2.04,0.97)$.
4. The Differential of f. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y$-plane. Let $\sigma: I \rightarrow \mathbb{R}^{2}$ denote a differentiable path defined on some interval $I \subseteq \mathbb{R}$ show interval lies in D. Denote the differential of σ by

$$
d \sigma=d x \hat{i}+d y \hat{j} .
$$

The differential of f, denoted by $d f$, is defined by the dot product of ∇f and $d \sigma$,

$$
d f=\nabla f \cdot d \sigma
$$

(a) Give and expression for computing the differential of f in terms of the partial derivatives of f and the differentials $d x$ and $d y$.
(b) Given $f(x, y)=x y$, for all $(x, y) \in \mathbb{R}^{2}$ to compute $d f$.
5. Let $p(A, D)$ denote the expression giving the real number π, where A denotes the area enclosed by a circle and D the diameter of the circle.
(a) Give and expression of $p(A, D)$.
(b) Compute the differential of p.
(c) Assume that a percent error of 0.001 can be made when measuring the area enclosed by the circle, and a percent error of 0.0005 can be made when measuring the diameter. Use the differential computed in part (b) to estimate the error in computing π.

