Assignment #20

Due on Wednesday, May 1, 2019

Read Section 6.2, on *Linear Approximations*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 6.3, on *Linear Approximations and Partial Derivatives*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 6.4, on *Partial Derivatives and the Gradient*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

• Linear approximation of a real valued function of two variables. Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D, in the xy-plane, and let (x_o, y_o) denote a point in D. Suppose that the partial derivatives of f exist and are continuous in D. The linear approximation for f at (x_o, y_o) is the affine function $L: \mathbb{R}^2 \to \mathbb{R}$ given by

$$L(x,y) = f(x_o, y_o) + \frac{\partial f}{\partial x}(x_o, y_o) \cdot (x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o) \cdot (y - y_o), \quad \text{for } (x,y) \in \mathbb{R}^2.$$

L(x, y) approximates f(x, y) when (x, y) is very close to (x_o, y_o) . We write

$$f(x,y) \approx f(x_o, y_o) + \frac{\partial f}{\partial x}(x_o, y_o) \cdot (x - x_o) + \frac{\partial f}{\partial y}(x_o, y_o) \cdot (y - y_o),$$

for (x, y) in D sufficiently close to (x_o, y_o) .

• The gradient of a function of two variables. Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}^2$. Suppose that the partial derivatives of f exist in D. The gradient of f, denoted by ∇f , is the vector valued function $\nabla f: D \to \mathbb{R}^2$ defined by $\nabla f(x,y) = \frac{\partial f}{\partial x}(x,y) \hat{i} + \frac{\partial f}{\partial y}(x,y) \hat{j}$, for $(x,y) \in D$.

Do the following problems

- 1. Let $f \colon \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = \frac{1}{2}x^2 + 2y^2$, for $(x,y) \in \mathbb{R}^2$.
 - (a) Compute the gradient of f for all $(x, y) \in \mathbb{R}^2$.
 - (b) Give the linear approximation to f for (x, y) near (2, 1).

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \sqrt{x^2 + y^2}, \quad \text{for } (x,y) \in \mathbb{R}^2.$$

- (a) Give the linear approximation to f near the point (3, 4).
- (b) Use the linear approximation to f at (3, 4) to estimate f(2.98, 4.01).
- 3. Assume that the temperature in an unevenly heated plate is given by T(x, y)°C at every point (x, y) in the plate, where T is a function of two variables with continuous partial derivatives T_x and T_y . Assume that T(2, 1) = 135 °C, and that the partial derivatives of T at (2, 1) have values $T_x(2, 1) = 16$ and $T_y(2, 1) = -15$. Estimate the temperature at the point (2.04, 0.97).
- 4. The Differential of f. Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D, in the xy-plane. Let $\sigma: I \to \mathbb{R}^2$ denote a differentiable path defined on some interval $I \subseteq \mathbb{R}$ show interval lies in D. Denote the differential of σ by

$$d\sigma = dx\hat{i} + dy\hat{j}.$$

The differential of f, denoted by df, is defined by the dot product of ∇f and $d\sigma$,

$$df = \nabla f \cdot d\sigma.$$

- (a) Give and expression for computing the differential of f in terms of the partial derivatives of f and the differentials dx and dy.
- (b) Given f(x, y) = xy, for all $(x, y) \in \mathbb{R}^2$ to compute df.
- 5. Let p(A, D) denote the expression giving the real number π , where A denotes the area enclosed by a circle and D the diameter of the circle.
 - (a) Give and expression of p(A, D).
 - (b) Compute the differential of p.
 - (c) Assume that a percent error of 0.001 can be made when measuring the area enclosed by the circle, and a percent error of 0.0005 can be made when measuring the diameter. Use the differential computed in part (b) to estimate the error in computing π .