Solutions to Assignment \#20

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\frac{1}{2} x^{2}+2 y^{2}$, for $(x, y) \in \mathbb{R}^{2}$.
(a) Compute the gradient of f for all $(x, y) \in \mathbb{R}^{2}$.

Solution: The gradient of f at $(x, y) \in \mathbb{R}^{2}$ is

$$
\nabla f(x, y)=\frac{\partial f}{\partial x}(x, y) \hat{i}+\frac{\partial f}{\partial y}(x, y) \hat{j},
$$

where

$$
\frac{\partial f}{\partial x}(x, y)=x
$$

and

$$
\frac{\partial f}{\partial y}(x, y)=4 y
$$

Consequently,

$$
\begin{equation*}
\nabla f(x, y)=x \hat{i}+4 y \hat{j}, \quad \text { for all }(x, y) \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

(b) Give the linear approximation to f for (x, y) near $(2,1)$.

Solution: The linear approximation to f at $(2,1)$ is

$$
L(x, y)=f(2,1)+\nabla f(2,1)^{‘} \cdot\left((x-2) \hat{i}+(y-1) \hat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}\right.
$$

where, according to (1),

$$
\nabla f(2,1)=2 \hat{i}+4 \hat{j} .
$$

Consequently,

$$
L(x, y)=4+2\left((x-2)+4(y-1), \quad \text { for }(x, y) \in \mathbb{R}^{2} .\right.
$$

2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\sqrt{x^{2}+y^{2}}, \quad \text { for }(x, y) \in \mathbb{R}^{2} .
$$

(a) Give the linear approximation to f near the point $(3,4)$.

Solution: The linear approximation to f at $(3,4)$ is

$$
L(x, y)=f(3,4)+\frac{\partial f}{\partial x}(3,4)(x-3)+\frac{\partial f}{\partial y}(3,4)(y-4), \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

where

$$
\frac{\partial f}{\partial x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

for $(x, y) \neq(0,0)$. Thus,

$$
\begin{equation*}
L(x, y)=5+\frac{3}{5}(x-3)+\frac{4}{5}(y-4), \quad \text { for }(x, y) \in \mathbb{R}^{2} . \tag{2}
\end{equation*}
$$

(b) Use the linear approximation to f at $(3,4)$ to estimate $f(2.98,4.01)$.

Solution: Use (2) to estimate

$$
\begin{aligned}
f(2.98,4.01) & \approx L(2.98,4.01) \\
& =5+\frac{3}{5}(2.98-3)+\frac{4}{5}(4.01-4) \\
& =5-\frac{3}{5}(0.02)+\frac{4}{5}(0.01) \\
& =5-0.012+0.008
\end{aligned}
$$

so that,

$$
f(2.98,4.01) \approx 4.996
$$

3. Assume that the temperature in an unevenly heated plate is given by $T(x, y)$ ${ }^{\circ} \mathrm{C}$ at every point (x, y) in the plate, where T is a function of two variables with continuous partial derivatives T_{x} and T_{y}. Assume that $T(2,1)=135^{\circ} \mathrm{C}$, and that the partial derivatives of T at $(2,1)$ have values $T_{x}(2,1)=16$ and $T_{y}(2,1)=-15$. Estimate the temperature at the point $(2.04,0.97)$.
Solution: The linear approximation to T at $(2,1)$ is

$$
L(x, y)=T(2.1)+T_{x}(2,1)(x-1)+T_{y}(2,1)(y-1), \quad \text { for }(x, y) \in \mathbb{R}^{2} ;
$$

so that

$$
L(x, y)=135+16(x-1)-15(y-1), \quad \text { for }(x, y) \in \mathbb{R}^{2} .
$$

Consequently,

$$
\begin{aligned}
T(2.04,0.97) & \approx L(2.04,0.97) \\
& =135+16(2.04-2)-15(0.97-1) \\
& =135+16(0.04)+15(0.03) \\
& =135+0.64+0.45
\end{aligned}
$$

so that,

$$
T(2.04,0.97) \approx 136.09^{\circ} \mathrm{C}
$$

4. The Differential of f. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y$-plane. Let $\sigma: I \rightarrow \mathbb{R}^{2}$ denote a differentiable path defined on some interval $I \subseteq \mathbb{R}$ show interval lies in D. Denote the differential of σ by

$$
d \sigma=d x \hat{i}+d y \hat{j}
$$

The differential of f, denoted by $d f$, is defined by the dot product of ∇f and $d \sigma$,

$$
d f=\nabla f \cdot d \sigma
$$

(a) Give and expression for computing the differential of f in terms of the partial derivatives of f and the differentials $d x$ and $d y$.
Solution: Compute

$$
\nabla f=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}
$$

and

$$
\begin{aligned}
d f & =\nabla f \cdot d \sigma \\
& =\left(\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}\right) \cdot(d x \hat{i}+d y \hat{j})
\end{aligned}
$$

so that,

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \tag{3}
\end{equation*}
$$

(b) Given $f(x, y)=x y$, for all $(x, y) \in \mathbb{R}^{2}$ to compute $d f$.

Solution: Use the formula in (3) with

$$
\frac{\partial f}{\partial x}=y \quad \text { and } \quad \frac{\partial f}{\partial y}=x
$$

to get

$$
d f=y d x+x d y
$$

5. Let $p(A, D)$ denote the expression giving the real number π, where A denotes the area enclosed by a circle and D the diameter of the circle.
(a) Give and expression of $p(A, D)$.

Solution: Using the formula

$$
A=\pi r^{2}
$$

for the area of a circle of radius r, we derive the expression

$$
\begin{equation*}
p(A, D)=\frac{4 A}{D^{2}} \tag{4}
\end{equation*}
$$

for computing π in terms of the area, A, enclosed by the circle and the diameter, D, of the circle.
(b) Compute the differential of p.

Solution: We compute the differential of p using the formula derived in (3) to get

$$
d p=\frac{\partial p}{\partial A} d A+\frac{\partial p}{\partial D} d D
$$

where, using the definition of p in (4)

$$
\frac{\partial p}{\partial A}=\frac{4}{D^{2}} \quad \text { and } \quad \frac{\partial p}{\partial D}=-\frac{8 A}{D^{3}}, \quad \text { for } D>0
$$

Thus,

$$
\begin{equation*}
d p=\frac{4}{D^{2}} d A-\frac{8 A}{D^{3}} d D, \quad \text { for } D>0 \tag{5}
\end{equation*}
$$

(c) Assume that a percent error of 0.001 can be made when measuring the area enclosed by the circle, and a percent error of 0.0005 can be made when measuring the diameter. Use the differential computed in part (b) to estimate the error in computing π.
Solution: The percent error in the estimation of π given by the expression in (4) can be estimated by

$$
\begin{equation*}
\frac{|d p|}{p}, \quad \text { for } p>0 \tag{6}
\end{equation*}
$$

where, according to (5) and the triangle inequality,

$$
\begin{equation*}
|d p| \leqslant \frac{4}{D^{2}}|d A|+\frac{8 A}{D^{3}}|d D|, \quad \text { for } D>0 \tag{7}
\end{equation*}
$$

Next, use the definition of p in (4) and the estimate in (7) to obtain the following estimate for the percent error in (6):

$$
\begin{equation*}
\frac{|d p|}{p} \leqslant \frac{|d A|}{A}+2 \frac{|d D|}{D}, \quad \text { for } A>0 \text { and } D>0 \tag{8}
\end{equation*}
$$

Applying (8) with

$$
\frac{|d A|}{A} \leqslant 0.001 \quad \text { and } \quad \frac{|d D|}{A} \leqslant 0.0005,
$$

we obtain that

$$
\frac{|d p|}{p} \leqslant 0.002 .
$$

Thus, the percent error in the estimation of π using the formula in (4) is at most 0.002 , or 0.2%.

