Assignment \#21

Due on Friday, May 3, 2019
Read Section 6.4, on Partial Derivatives and the Gradient, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 6.5, on The Gradient and the Chain-Rule, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

- The Chain-Rule. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y$-plane, and let $\sigma: I \rightarrow \mathbb{R}^{2}$, for some open interval I, denote a differentiable path with $\sigma(t) \in D$ for all $t \in I$. Suppose that the partial derivatives of f exist and are continuous in D. Then, for any $t \in I$,

$$
\frac{d}{d t}[f(\sigma(t))]=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t)
$$

where ∇f denotes the gradient of $f, \sigma^{\prime}(t)$ is the derivative of the path σ, and the dot between ∇f and σ^{\prime} indicates the dot product of the two vectors.

- Directional Derivative. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D. Suppose that the first order partial derivatives of f exist at (x, y). Let \hat{u} denote a unit vector in \mathbb{R}^{2}. The directional derivative of f at (x, y) in the direction of \hat{u}, denoted by $D_{\hat{u}} f(x, y)$, is defined by

$$
D_{\hat{u}} f(x, y)=\nabla f(x, y) \cdot \hat{u}
$$

the dot product of the gradient of f at (x, y) with \hat{u}.
Do the following problems

1. Let $f(x, y)=x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute the directional derivative f $(2,1)$ in the direction of the line $y=x$ towards the first quadrant.
Suggestion: Find a unit vector \hat{u} in the direction of the line $y=x$ towards the first quadrant.
2. The directional derivative of a function, f, of two variables, x and y, at $(2,1)$ in the direction towards the point $(1,3)$ is $-2 / \sqrt{5}$, and the directional derivative at $(2,1)$ in the direction of towards the point $(5,5)$ is 1 . Compute the first-order partial derivatives of f at $(2,1)$.
3. A bug is moving on a two-dimensional plate, D, with temperature $u(x, y)$ for all $(x, y) \in D$. Assume that at $\left(x_{o}, y_{o}\right) \in D$,

$$
\frac{\partial u}{\partial x}\left(x_{o}, y_{o}\right)=-2 \quad \text { and } \quad \frac{\partial u}{\partial y}\left(x_{o}, y_{o}\right)=1
$$

Suppose the velocity of the bug at when it is at $\left(x_{o}, y_{o}\right)$ is given by the vector $v=4 \hat{i}+7 \hat{j}$. Compute the rate of change of temperature along the path of the bug at the point $\left(x_{o}, y_{o}\right)$.
4. Let \hat{u} denote a unit vector and put $\sigma(t)=x_{o} \hat{i}+y_{o} \hat{j}+t \hat{u}$ for all $t \in \mathbb{R}$. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y-$ plane that contains the point $\left(x_{o}, y_{o}\right)$.
(a) Apply the Chain Rule to compute $\frac{d}{d t}[f(\sigma(t))]$ at $t=0$. Explain why this yields the directional derivative of f at $\left(x_{o}, y_{o}\right)$ in the direction of \hat{u}.
(b) Deduce that

$$
\begin{equation*}
D_{\hat{u}} f(x, y)=\|\nabla f(x, y)\| \cos \theta, \quad \text { for all }(x, y) \in D \tag{1}
\end{equation*}
$$

where θ is the angle that $\nabla f(x, y)$ makes with the unit vector \widehat{u}.
Conclude from (1) that the rate of change of f at (x, y) is the largest in the direction of the gradient of f at (x, y).
5. Let $f(x, y)=3 x y+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$.
(a) Give the direction of maximum rate of change of f at $(2,3)$.
(b) Give the direction in which f is decreasing the fastest at $(2,3)$.
(c) Give the direction in which the rate of change of f is at $(2,3)$ is zero.

