Assignment #21

Due on Friday, May 3, 2019

Read Section 6.4, on *Partial Derivatives and the Gradient*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 6.5, on *The Gradient and the Chain-Rule*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

• The Chain–Rule. Let $f: D \to \mathbb{R}$ be a real–valued function defined on some domain, D, in the xy–plane, and let $\sigma: I \to \mathbb{R}^2$, for some open interval I, denote a differentiable path with $\sigma(t) \in D$ for all $t \in I$. Suppose that the partial derivatives of f exist and are continuous in D. Then, for any $t \in I$,

$$\frac{d}{dt}[f(\sigma(t))] = \nabla f(\sigma(t)) \cdot \sigma'(t),$$

where ∇f denotes the gradient of f, $\sigma'(t)$ is the derivative of the path σ , and the dot between ∇f and σ' indicates the dot product of the two vectors.

• Directional Derivative. Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D. Suppose that the first order partial derivatives of f exist at (x, y). Let \hat{u} denote a unit vector in \mathbb{R}^2 . The directional derivative of f at (x, y)in the direction of \hat{u} , denoted by $D_{\hat{u}}f(x, y)$, is defined by

$$D_{\hat{u}}f(x,y) = \nabla f(x,y) \cdot \hat{u},$$

the dot product of the gradient of f at (x, y) with \hat{u} .

Do the following problems

1. Let $f(x, y) = x^2 + y^2$ for all $(x, y) \in \mathbb{R}^2$. Compute the directional derivative f(2, 1) in the direction of the line y = x towards the first quadrant. Suggestion: Find a unit vector \hat{u} in the direction of the line y = x towards the

Suggestion: Find a unit vector \hat{u} in the direction of the line y = x towards the first quadrant.

2. The directional derivative of a function, f, of two variables, x and y, at (2, 1) in the direction towards the point (1,3) is $-2/\sqrt{5}$, and the directional derivative at (2,1) in the direction of towards the point (5,5) is 1. Compute the first-order partial derivatives of f at (2,1).

Math 32S. Rumbos

3. A bug is moving on a two-dimensional plate, D, with temperature u(x, y) for all $(x, y) \in D$. Assume that at $(x_o, y_o) \in D$,

$$\frac{\partial u}{\partial x}(x_o, y_o) = -2$$
 and $\frac{\partial u}{\partial y}(x_o, y_o) = 1.$

Suppose the velocity of the bug at when it is at (x_o, y_o) is given by the vector $v = 4\hat{i} + 7\hat{j}$. Compute the rate of change of temperature along the path of the bug at the point (x_o, y_o) .

- 4. Let \hat{u} denote a unit vector and put $\sigma(t) = x_o\hat{i} + y_o\hat{j} + t\hat{u}$ for all $t \in \mathbb{R}$. Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D, in the xy-plane that contains the point (x_o, y_o) .
 - (a) Apply the Chain Rule to compute $\frac{d}{dt}[f(\sigma(t))]$ at t = 0. Explain why this yields the directional derivative of f at (x_o, y_o) in the direction of \hat{u} .
 - (b) Deduce that

$$D_{\hat{u}}f(x,y) = \|\nabla f(x,y)\|\cos\theta, \quad \text{for all } (x,y) \in D, \tag{1}$$

where θ is the angle that $\nabla f(x, y)$ makes with the unit vector \hat{u} . Conclude from (1) that the rate of change of f at (x, y) is the largest in the direction of the gradient of f at (x, y).

- 5. Let $f(x, y) = 3xy + y^2$ for all $(x, y) \in \mathbb{R}^2$.
 - (a) Give the direction of maximum rate of change of f at (2,3).
 - (b) Give the direction in which f is decreasing the fastest at (2,3).
 - (c) Give the direction in which the rate of change of f is at (2,3) is zero.