Solutions to Assignment #21

1. Let $f(x,y) = x^2 + y^2$ for all $(x,y) \in \mathbb{R}^2$. Compute the directional derivative f(2,1) in the direction of the line y = x towards the first quadrant.

Suggestion: Find a unit vector \hat{u} in the direction of the line y = x towards the first quadrant.

Solution: We compute the directional derivative of f at (2, 1) in the direction of the vector

$$\hat{u} = rac{\sqrt{2}}{2} \,\hat{i} + rac{\sqrt{2}}{2} \,\hat{j},$$
 $D_{\hat{u}}f(2,1) =
abla f(2,1) \cdot \hat{u}.$

where

$$\nabla f(x,y) = 2x \ \hat{i} + 2y \ \hat{j}, \quad \text{ for all } (x,y) \in \mathbb{R}^2;$$

so that,

$$\nabla f(2,1) = 4 \hat{i} + 2 \hat{j}$$

Consequently,

$$D_{\hat{u}}f(2,1) = \frac{\sqrt{2}}{2}(4) + \frac{\sqrt{2}}{2}(2) = 3\sqrt{2}.$$

2. The directional derivative of a function, f, of two variables, x and y, at (2, 1) in the direction towards the point (1, 3) is $-2/\sqrt{5}$, and the directional derivative at (2, 1) in the direction of towards the point (5, 5) is 1. Compute the first-order partial derivatives of f at (2, 1).

Solution: We use the formula

$$D_{\hat{u}}f(x_o, y_o) = \frac{\partial f}{\partial x}(x_o, y_o) \cdot u_1 + \frac{\partial f}{\partial y}(x_o, y_o) \cdot u_2,$$

where $(x_o, y_o) = (2, 1)$ and u_1 and u_2 are the components of the unit vector \hat{u} ; so that,

$$D_{\hat{u}}f(2,1) = f_x(2,1) \ u_1 + f_y(2,1) \ u_2. \tag{1}$$

Let $u_1 \hat{i} + u_2 \hat{j}$ denote the unit vector in the direction from (2, 1) to (1, 3); then,

$$u_1 = -\frac{1}{\sqrt{5}}$$
 and $u_2 = \frac{2}{\sqrt{5}};$

Math 32S. Rumbos

so that, using (1),

$$D_{\hat{u}}f(2,1) = -\frac{1}{\sqrt{5}}f_x(2,1) + \frac{2}{\sqrt{5}}f_y(2,1).$$
(2)

Similarly, if $v_1 \ \hat{i} + v_2 \ \hat{j}$ denotes the unit vector in the direction from (2,1) to (5,5), then

$$v_1 = \frac{3}{5}$$
 and $v_2 = \frac{4}{5};$

so that, using (1),

$$D_{\hat{v}}f(2,1) = \frac{3}{5}f_x(2,1) + \frac{4}{5}f_y(2,1).$$
(3)

We are given that

$$D_{\hat{u}}f(2,1) = -\frac{2}{\sqrt{5}} \tag{4}$$

and

or

or

$$D_{\hat{v}}f(2,1) = 1. \tag{5}$$

Thus, comparing (2) and (4),

$$-\frac{1}{\sqrt{5}}f_x(2,1) + \frac{2}{\sqrt{5}}f_y(2,1) = -\frac{2}{\sqrt{5}},$$
$$f_x(2,1) - 2f_y(2,1) = 2.$$
 (6)

Similarly, comparing (3) and (5), we see that

$$\frac{3}{5}f_x(2,1) + \frac{4}{5}f_y(2,1) = 1,$$

$$3f_x(2,1) + 4f_y(2,1) = 5.$$
 (7)

Thus, solving the equations in (6) and (7) we get that

$$f_x(2,1) = \frac{9}{5}$$
 and $f_y(2,1) = -\frac{1}{10}$.

Math 32S. Rumbos

3. A bug is moving on a two-dimensional plate, D, with temperature u(x, y) for all $(x, y) \in D$. Assume that at $(x_o, y_o) \in D$,

$$\frac{\partial u}{\partial x}(x_o, y_o) = -2$$
 and $\frac{\partial u}{\partial y}(x_o, y_o) = 1.$

Suppose the velocity of the bug at when it is at (x_o, y_o) is given by the vector $v = 4\hat{i} + 7\hat{j}$. Compute the rate of change of temperature along the path of the bug at the point (x_o, y_o) .

Solution: Using the Chain–Rule we get

$$\frac{d}{dt}[u(x(t), y(t))] = \frac{\partial u}{\partial x}(x(t), y(t)) \ \frac{dx}{dt} + \frac{\partial u}{\partial y}(x(t), y(t)) \ \frac{dy}{dt},$$

for all $t \in \mathbb{R}$.

At a time t_o at which the bug is at (x_o, y_o) , we get

$$\frac{d}{dt}[u(x(t), y(t))]\Big|_{t=t_o} = \frac{\partial u}{\partial x}(x_o, y_o) \frac{dx}{dt} + \frac{\partial u}{\partial y}(x_o, y_o) \frac{dy}{dt}$$

where

$$\frac{dx}{dt} = 4$$
 and $\frac{dy}{dt} = 7$,

and

$$\frac{\partial u}{\partial x}(x_o, y_o) = -2$$
 and $\frac{\partial u}{\partial y}(x_o, y_o) = 1.$

Thus, the rate of change of temperature along the path of the bug at the point (x_o, y_o) is

$$\frac{du}{dt}\Big|_{t=t_o} = (-2)(4) + (1)(7)$$

= -1.

- 4. Let \hat{u} denote a unit vector and put $\sigma(t) = x_o \hat{i} + y_o \hat{j} + t\hat{u}$ for all $t \in \mathbb{R}$. Let $f: D \to \mathbb{R}$ be a real-valued function defined on some domain, D, in the xy-plane that contains the point (x_o, y_o) .
 - (a) Apply the Chain Rule to compute $\frac{d}{dt}[f(\sigma(t))]$ at t = 0. Explain why this yields the directional derivative of f at (x_o, y_o) in the direction of \hat{u} .

Solution: Let \hat{u} denote a unit vector in \mathbb{R}^2 and define $\sigma \colon \mathbb{R} \to \mathbb{R}^2$ by

$$\sigma(t) = (x_o, y_o) + t\hat{u}, \quad \text{for all } t \in \mathbb{R}.$$
(8)

Then, $\sigma(0) = (x_o, y_o)$ and, for |t| sufficiently small, $\sigma(t) \in D$, and we can apply the Chain-Rule to conclude that $f \circ \sigma$ is differentiable and

$$\frac{d}{dt}[f(\sigma(t))] = \nabla f(\sigma(t)) \cdot \sigma'(t), \quad \text{for } |t| \text{ sufficiently small},$$

or, in view of (8),

$$\frac{d}{dt}[f((x_o, y_o) + t\hat{u})] = \nabla f((x_o, y_o) + t\hat{u}) \cdot \hat{u}, \qquad (9)$$

for |t| very close to 0.

Setting t = 0 in (9) we obtain

$$\left. \frac{d}{dt} \left[f((x_o, y_o) + t\hat{u}) \right] \right|_{t=0} = \nabla f(x_o, y_o) \cdot \hat{u}.$$

$$\tag{10}$$

The expression on the left-hand side of (10) gives the rate of change of the value of the function f at (x_o, y_o) along a line through (x_o, y_o) in the direction of \hat{u} (this is the straight line parametrized by the path σ given in (8). It is therefore the **directional derivative** of f at (x_o, y_o) in the direction of the unit vector \hat{u} , which is also denoted by $D_{\hat{u}}f(x_o, y_o)$. Thus, (10) can be rewritten as

$$D_{\hat{u}}f(x_o, y_o) = \nabla f(x_o, y_o) \cdot \hat{u}.$$

(b) Deduce that

$$D_{\hat{u}}f(x,y) = \|\nabla f(x,y)\|\cos\theta, \quad \text{for all } (x,y) \in D,$$
(11)

where θ is the angle that $\nabla f(x, y)$ makes with the unit vector \hat{u} .

Conclude from (11) that the rate of change of f at (x, y) is the largest in the direction of the gradient of f at (x, y).

Solution: Since, according to (11), $D_{\hat{u}}f(x,y)$ is the dot product of the vector $\nabla f(x_o, y_o)$ and the vector \hat{u} , it follows that

$$D_{\hat{u}}f(x,y) = \|\nabla f(x,y)\| \|\hat{u}\| \cos \theta, \quad \text{ for all } (x,y) \in D,$$

where θ is the angle between $\nabla f(x, y)$ and the unit vector \hat{u} . Thus, since $\|\hat{u}\| = 1$, (11) follows.

Observe that $\cos \theta$ is the largest possible when $\cos \theta = 1$. This happens when $\theta = 0$, or when \hat{u} is in the same direction as $\nabla f(x, y)$.

- 5. Let $f(x,y) = 3xy + y^2$ for all $(x,y) \in \mathbb{R}^2$.
 - (a) Give the direction of maximum rate of change of f at (2,3). **Solution**: According to the result in Problem 4, the direction of maximum

rate of change of f at (2,3) is that of the gradient of f at (2,3). We therefore compute $\nabla f(2,3)$.

The gradient of f at any (x, y) in \mathbb{R}^2 is given by

$$\nabla f(x,y) = 3y \ \hat{i} + (3x + 2y) \ \hat{j}, \quad \text{ for all } (x,y) \in \mathbb{R}^2.$$

Hence, The direction of maximum rate of change of f at (2,3) is that of the vector

$$\nabla f(2,3) = 9 \ \hat{i} + 12 \ \hat{j}.$$

- (b) Give the direction in which f is decreasing the fastest at (2,3).
 - **Solution**: According to (11, the rate of change of f at (x, y) in the direction of \hat{u} is negative and the largest in magnitude then $\cos \theta = -1$. This occurs when θ is π radians, or 180°. Thus, the direction of maximum decrease of f at (2,3) is that opposite the gradient of f at (2,3), or $-\nabla f(2,3)$. Hence, the direction in which f is decreasing the fastest at (2,3) that of

$$-\nabla f(2,3) = -9 \ \hat{i} - 12 \ \hat{j}.$$

(c) Give the direction in which the rate of change of f is at (2,3) is zero.

Solution: In view of (11, we see that $D_{\hat{u}}f(2,3) = 0$ when $\cos \theta = 0$. This occurs when \hat{u} is perpendicular to $\nabla f(2,3)$. Thus, the direction in which the rate of change of f is at (2,3) is zero. is that of

$$12 \ \hat{i} - 9 \ \hat{j}$$

or

$$-12 \ \hat{i} + 9 \ \hat{j}.$$