Solutions to Assignment \#21

1. Let $f(x, y)=x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute the directional derivative f $(2,1)$ in the direction of the line $y=x$ towards the first quadrant.
Suggestion: Find a unit vector \hat{u} in the direction of the line $y=x$ towards the first quadrant.
Solution: We compute the directional derivative of f at $(2,1)$ in the direction of the vector

$$
\begin{gathered}
\hat{u}=\frac{\sqrt{2}}{2} \hat{i}+\frac{\sqrt{2}}{2} \hat{j} \\
D_{\hat{u}} f(2,1)=\nabla f(2,1) \cdot \hat{u}
\end{gathered}
$$

where

$$
\nabla f(x, y)=2 x \hat{i}+2 y \hat{j}, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

so that,

$$
\nabla f(2,1)=4 \hat{i}+2 \hat{j}
$$

Consequently,

$$
D_{\hat{u}} f(2,1)=\frac{\sqrt{2}}{2}(4)+\frac{\sqrt{2}}{2}(2)=3 \sqrt{2} .
$$

2. The directional derivative of a function, f, of two variables, x and y, at $(2,1)$ in the direction towards the point $(1,3)$ is $-2 / \sqrt{5}$, and the directional derivative at $(2,1)$ in the direction of towards the point $(5,5)$ is 1 . Compute the first-order partial derivatives of f at $(2,1)$.
Solution: We use the formula

$$
D_{\hat{u}} f\left(x_{o}, y_{o}\right)=\frac{\partial f}{\partial x}\left(x_{o}, y_{o}\right) \cdot u_{1}+\frac{\partial f}{\partial y}\left(x_{o}, y_{o}\right) \cdot u_{2}
$$

where $\left(x_{o}, y_{o}\right)=(2,1)$ and u_{1} and u_{2} are the components of the unit vector \hat{u}; so that,

$$
\begin{equation*}
D_{\hat{u}} f(2,1)=f_{x}(2,1) u_{1}+f_{y}(2,1) u_{2} . \tag{1}
\end{equation*}
$$

Let $u_{1} \hat{i}+u_{2} \hat{j}$ denote the unit vector in the direction from $(2,1)$ to (1,3); then,

$$
u_{1}=-\frac{1}{\sqrt{5}} \quad \text { and } \quad u_{2}=\frac{2}{\sqrt{5}}
$$

so that, using (1),

$$
\begin{equation*}
D_{\hat{u}} f(2,1)=-\frac{1}{\sqrt{5}} f_{x}(2,1)+\frac{2}{\sqrt{5}} f_{y}(2,1) \tag{2}
\end{equation*}
$$

Similarly, if $v_{1} \hat{i}+v_{2} \hat{j}$ denotes the unit vector in the direction from $(2,1)$ to $(5,5)$, then

$$
v_{1}=\frac{3}{5} \quad \text { and } \quad v_{2}=\frac{4}{5}
$$

so that, using (1),

$$
\begin{equation*}
D_{\hat{v}} f(2,1)=\frac{3}{5} f_{x}(2,1)+\frac{4}{5} f_{y}(2,1) \tag{3}
\end{equation*}
$$

We are given that

$$
\begin{equation*}
D_{\hat{u}} f(2,1)=-\frac{2}{\sqrt{5}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\hat{v}} f(2,1)=1 \tag{5}
\end{equation*}
$$

Thus, comparing (2) and (4),

$$
-\frac{1}{\sqrt{5}} f_{x}(2,1)+\frac{2}{\sqrt{5}} f_{y}(2,1)=-\frac{2}{\sqrt{5}},
$$

or

$$
\begin{equation*}
f_{x}(2,1)-2 f_{y}(2,1)=2 \tag{6}
\end{equation*}
$$

Similarly, comparing (3) and (5), we see that

$$
\frac{3}{5} f_{x}(2,1)+\frac{4}{5} f_{y}(2,1)=1
$$

or

$$
\begin{equation*}
3 f_{x}(2,1)+4 f_{y}(2,1)=5 \tag{7}
\end{equation*}
$$

Thus, solving the equations in (6) and (7) we get that

$$
f_{x}(2,1)=\frac{9}{5} \quad \text { and } \quad f_{y}(2,1)=-\frac{1}{10} .
$$

3. A bug is moving on a two-dimensional plate, D, with temperature $u(x, y)$ for all $(x, y) \in D$. Assume that at $\left(x_{o}, y_{o}\right) \in D$,

$$
\frac{\partial u}{\partial x}\left(x_{o}, y_{o}\right)=-2 \quad \text { and } \quad \frac{\partial u}{\partial y}\left(x_{o}, y_{o}\right)=1
$$

Suppose the velocity of the bug at when it is at $\left(x_{o}, y_{o}\right)$ is given by the vector $v=4 \hat{i}+7 \hat{j}$. Compute the rate of change of temperature along the path of the bug at the point $\left(x_{o}, y_{o}\right)$.
Solution: Using the Chain-Rule we get

$$
\frac{d}{d t}[u(x(t), y(t))]=\frac{\partial u}{\partial x}(x(t), y(t)) \frac{d x}{d t}+\frac{\partial u}{\partial y}(x(t), y(t)) \frac{d y}{d t},
$$

for all $t \in \mathbb{R}$.
At a time t_{o} at which the bug is at $\left(x_{o}, y_{o}\right)$, we get

$$
\left.\frac{d}{d t}[u(x(t), y(t))]\right|_{t=t_{o}}=\frac{\partial u}{\partial x}\left(x_{o}, y_{o}\right) \frac{d x}{d t}+\frac{\partial u}{\partial y}\left(x_{o}, y_{o}\right) \frac{d y}{d t}
$$

where

$$
\frac{d x}{d t}=4 \quad \text { and } \quad \frac{d y}{d t}=7
$$

and

$$
\frac{\partial u}{\partial x}\left(x_{o}, y_{o}\right)=-2 \quad \text { and } \quad \frac{\partial u}{\partial y}\left(x_{o}, y_{o}\right)=1 .
$$

Thus, the rate of change of temperature along the path of the bug at the point $\left(x_{o}, y_{o}\right)$ is

$$
\begin{aligned}
\left.\frac{d u}{d t}\right|_{t=t_{o}} & =(-2)(4)+(1)(7) \\
& =-1
\end{aligned}
$$

4. Let \hat{u} denote a unit vector and put $\sigma(t)=x_{o} \hat{i}+y_{o} \hat{j}+t \hat{u}$ for all $t \in \mathbb{R}$. Let $f: D \rightarrow \mathbb{R}$ be a real-valued function defined on some domain, D, in the $x y-$ plane that contains the point $\left(x_{o}, y_{o}\right)$.
(a) Apply the Chain Rule to compute $\frac{d}{d t}[f(\sigma(t))]$ at $t=0$. Explain why this yields the directional derivative of f at $\left(x_{o}, y_{o}\right)$ in the direction of \hat{u}.

Solution: Let \hat{u} denote a unit vector in \mathbb{R}^{2} and define $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
\begin{equation*}
\sigma(t)=\left(x_{o}, y_{o}\right)+t \hat{u}, \quad \text { for all } t \in \mathbb{R} . \tag{8}
\end{equation*}
$$

Then, $\sigma(0)=\left(x_{o}, y_{o}\right)$ and, for $|t|$ sufficiently small, $\sigma(t) \in D$, and we can apply the Chain-Rule to conclude that $f \circ \sigma$ is differentiable and

$$
\frac{d}{d t}[f(\sigma(t))]=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t), \quad \text { for }|t| \text { sufficeintly small }
$$

or, in view of (8),

$$
\begin{equation*}
\frac{d}{d t}\left[f\left(\left(x_{o}, y_{o}\right)+t \hat{u}\right)\right]=\nabla f\left(\left(x_{o}, y_{o}\right)+t \hat{u}\right) \cdot \hat{u} \tag{9}
\end{equation*}
$$

for $|t|$ very close to 0 .
Setting $t=0$ in (9) we obtain

$$
\begin{equation*}
\left.\frac{d}{d t}\left[f\left(\left(x_{o}, y_{o}\right)+t \hat{u}\right)\right]\right|_{t=0}=\nabla f\left(x_{o}, y_{o}\right) \cdot \hat{u} \tag{10}
\end{equation*}
$$

The expression on the left-hand side of (10) gives the rate of change of the value of the function f at $\left(x_{o}, y_{o}\right)$ along a line through $\left(x_{o}, y_{o}\right)$ in the direction of \hat{u} (this is the straight line parametrized by the path σ given in (8). It is therefore the directional derivative of f at $\left(x_{o}, y_{o}\right)$ in the direction of the unit vector \hat{u}, which is also denoted by $D_{\hat{u}} f\left(x_{o}, y_{o}\right)$. Thus, (10) can be rewritten as

$$
D_{\hat{u}} f\left(x_{o}, y_{o}\right)=\nabla f\left(x_{o}, y_{o}\right) \cdot \hat{u}
$$

(b) Deduce that

$$
\begin{equation*}
D_{\hat{u}} f(x, y)=\|\nabla f(x, y)\| \cos \theta, \quad \text { for all }(x, y) \in D \tag{11}
\end{equation*}
$$

where θ is the angle that $\nabla f(x, y)$ makes with the unit vector \widehat{u}.
Conclude from (11) that the rate of change of f at (x, y) is the largest in the direction of the gradient of f at (x, y).
Solution: Since, according to (11), $D_{\hat{u}} f(x, y)$ is the dot product of the vector $\nabla f\left(x_{o}, y_{o}\right)$ and the vector \hat{u}, it follows that

$$
D_{\hat{u}} f(x, y)=\|\nabla f(x, y)\|\|\hat{u}\| \cos \theta, \quad \text { for all }(x, y) \in D
$$

where θ is the angle between $\nabla f(x, y)$ and the unit vector \hat{u}. Thus, since $\|\hat{u}\|=1$, (11) follows.
Observe that $\cos \theta$ is the largest possible when $\cos \theta=1$. This happens when $\theta=0$, or when \hat{u} is in the same direction as $\nabla f(x, y)$.
5. Let $f(x, y)=3 x y+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$.
(a) Give the direction of maximum rate of change of f at $(2,3)$.

Solution: According to the result in Problem 4, the direction of maximum rate of change of f at $(2,3)$ is that of the gradient of f at $(2,3)$. We therefore compute $\nabla f(2,3)$.
The gradient of f at any (x, y) in \mathbb{R}^{2} is given by

$$
\nabla f(x, y)=3 y \hat{i}+(3 x+2 y) \hat{j}, \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Hence, The direction of maximum rate of change of f at $(2,3)$ is that of the vector

$$
\nabla f(2,3)=9 \hat{i}+12 \hat{j} .
$$

(b) Give the direction in which f is decreasing the fastest at $(2,3)$.

Solution: According to (11, the rate of change of f at (x, y) in the direction of \hat{u} is negative and the largest in magnitude then $\cos \theta=-1$. This occurs when θ is π radians, or 180°. Thus, the direction of maximum decrease of f at $(2,3)$ is that opposite the gradient of f at $(2,3)$, or $-\nabla f(2,3)$. Hence, the direction in which f is decreasing the fastest at $(2,3)$ that of

$$
-\nabla f(2,3)=-9 \hat{i}-12 \hat{j} .
$$

(c) Give the direction in which the rate of change of f is at $(2,3)$ is zero.

Solution: In view of (11, we see that $D_{\hat{u}} f(2,3)=0$ when $\cos \theta=0$. This occurs when \hat{u} is perpendicular to $\nabla f(2,3)$. Thus, the direction in which the rate of change of f is at $(2,3)$ is zero. is that of

$$
12 \hat{i}-9 \hat{j}
$$

or

$$
-12 \hat{i}+9 \hat{j}
$$

