Solutions to Assignment \#3

1. Give a parametrization of the portion of the graph of $y=\sqrt{x}$ from the point $(1,1)$ the point $(16,4)$.
Sketch the curve.
Solution: A parametrization is given by

$$
(x(t), y(t))=(t, \sqrt{t}), \quad \text { for } 1 \leqslant t \leqslant 16
$$

A sketch of the curve is shown in Figure 1.

Figure 1: Sketch of Curve in Problem 1
2. Give a parametrization of the portion of the ellipse given by the graph of the

$$
\begin{equation*}
x^{2}+4 y^{2}=4 \tag{1}
\end{equation*}
$$

in the first quadrant.
Sketch the curve.
Solution: Divide both sides of the equation in (1) by 4 to get

$$
\begin{equation*}
\frac{x^{2}}{2}+y^{2}=1 \tag{2}
\end{equation*}
$$

It follows from (2) that a parametrization of the portion of the ellipse in (2) is given by

$$
\left\{\begin{array}{l}
x(t)=2 \cos t ; \tag{3}\\
y(t)=\sin t,
\end{array} \quad \text { for } 0 \leqslant t \leqslant \frac{\pi}{2}\right.
$$

A sketch of the curve parametrized by (3) is shown in Figure 2.

Figure 2: Sketch of Curve in Problem 2
3. Give a parametrization of a circular arc from the point $P(0,0)$ to the point $Q(10,0)$ on a circle of radius 5 .

Sketch the curve.
Solution: There are two possible curves along the circle that connect the point $P(0,0)$ to the point $Q(10,0)$.
The circle in question is centered at $(5,0)$ and has radius 5 ; thus, it has equation

$$
\begin{equation*}
(x-5)^{2}+y^{2}=25 \tag{4}
\end{equation*}
$$

It follows from (4) that a parametrization of the arc is given by

$$
\left\{\begin{array}{l}
x(t)=5+5 \sin t ; \tag{5}\\
y(t)=5 \cos t,
\end{array} \quad \text { for }-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}\right.
$$

A sketch of the curve parametrized by (5) is shown in Figure 3.

Figure 3: Sketch of Curve in Problem 3

The other arc along the circle in (4) connecting the point $P(0,0)$ to the point $Q(10,0)$ is the portion of the circle that lies below the x-axis. The parametrization of that arc if given by

$$
\left\{\begin{array}{l}
x(t)=5+5 \sin t ; \tag{6}\\
y(t)=-5 \cos t,
\end{array} \quad \text { for }-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}\right.
$$

A sketch of the curve parametrized by (6) is shown in Figure 4.

Figure 4: Sketch of Curve in Problem 3
4. Give a parametrization of the straight line segment from the point $P(2,5)$ to the point $Q(12,9)$.
Sketch the curve.
Solution: A parametrization of the directed line segment $\overrightarrow{P Q}$ is

$$
\left\{\begin{array}{l}
x(t)=2+10 t ; \tag{7}\\
y(t)=5+4 t,
\end{array} \quad \text { for } 0 \leqslant t \leqslant 1\right.
$$

A sketch of $\overrightarrow{P Q}$ is shown in Figure 5 .
5. Give a parametrization of the straight line through the point $P(2,1)$ that is parallel to the line $y=2 x$.
Sketch the curve.
Solution: A parametrization of the line is

$$
\left\{\begin{array}{l}
x(t)=2+t ; \tag{8}\\
y(t)=1+2 t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

since the slope of the line is 2 . A sketch of the line is shown in Figure 6.

Figure 5: Sketch of Directed Line Segment in Problem 4

Figure 6: Sketch of Directed Line Segment in Problem 5

