Assignment \#4

Due on Wednesday, February 13, 2019
Read Section 4.1, on Vectors in the Plane, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let the points P and Q in \mathbb{R}^{2} have coordinates $(1,-1)$ and $(-2,3)$, respectively.
(a) Sketch the displacement vector $\overrightarrow{P Q}$.
(b) Sketch the vector $v=\overrightarrow{P Q}$ in standard position.
(c) Compute the cosine of the angle that v makes with the positive x-axis.
(d) Compute the norm, $\|v\|$, of the vector v in part (a) and find a vector, \widehat{u}, of norm 1 that is in the same direction as the vector v.
2. Let P, Q and v be as in Problem 1 .
(a) Give the parametric equations of the line through the points P and Q.
(b) Give the parametric equations of the line through P that is perpendicular to the line found in part (a).
(c) Give a vector, w, that is perpendicular to v and such that $\|w\|=1$.
3. Let v denote the vector $v=\binom{a}{b}$. For a real number c, the scalar multiple $c v$ of v is defined by $c v=\binom{c a}{c b}$.
(a) Suppose that $c \neq 0$. Explain why the vector $c v$ lies in the same line through the origin as the vector v. Discuss the cases $c>0$ and $c<0$.
(b) Use the definition of the norm of vectors to verify that $\|c v\|=|c|\|v\|$, where $|c|$ is the absolute value of c.
(c) Suppose that $\|v\| \neq 0$ and put $c=\frac{1}{\|v\|}$. Compute $\|c v\|$. What do you conclude?
4. Let J denote and open interval of real numbers and $\sigma: J \rightarrow \mathbb{R}^{2}$ denote a differeantiable path given by

$$
\sigma(t)=\binom{x(t)}{y(t)}, \quad \text { for } t \in J
$$

Assume that $\|\sigma(t)\| \neq 0$ for all $t \in \mathbb{R}$, and define the real-value function $f: J \rightarrow$ \mathbb{R} by

$$
f(t)=\|\sigma(t)\|, \quad \text { for } t \in J
$$

Use the Chain Rule to show that f is differentiable and compute $f^{\prime}(t)$ for all $t \in J$. Give a formula for computing $f^{\prime}(t)$, for all $t \in J$, in terms of $x(t), y(t)$, $x^{\prime}(t), y^{\prime}(t)$, and $\|\sigma(t)\|$.
5. Let P and Q denote points in the $x y$-plane with Cartesian coordinates $(1,0)$ and $(0,1)$, respectively.
(a) Give the equation of the line through P and Q in Cartesian coordinates.
(b) Give parametric equations of the line through P and Q.
(c) Let

$$
\sigma(t)=\binom{x(t)}{y(t)}, \quad \text { for } t \in \mathbb{R}
$$

be the parametrization of the line through P and Q that you found in part (b).

Define $f(t)=\|\sigma(t)\|$, for all $t \in \mathbb{R}$.
Find the value of t in \mathbb{R} for which $f(t)$ is the smallest possible. Use this fact to find the point on the line through P and Q that is the closest to the origin in \mathbb{R}^{2}. Explain the reasoning leading to your answer.

