Solutions to Assignment \#4

1. Let the points P and Q in \mathbb{R}^{2} have coordinates $(1,-1)$ and $(-2,3)$, respectively.
(a) Sketch the displacement vector $\overrightarrow{P Q}$.

Solution: See sketch in Figure 1.

Figure 1: Sketch of directed line segment from P to Q
(b) Sketch the vector $v=\overrightarrow{P Q}$ in standard position.

Solution: See sketch of v in standard position in Figure 1.
(c) Compute the cosine of the angle that v makes with the positive x-axis.

Solution: Write

$$
v=\binom{-3}{4}
$$

Let θ denote the angle that v (in standard position) makes with the positive x-axis. Then,

$$
\cos \theta=\frac{-3}{\|v\|}
$$

where

$$
\|v\|=\sqrt{(-3)^{2}+4^{2}}=\sqrt{25}=5 .
$$

Thus,

$$
\cos \theta=-\frac{3}{5}
$$

(d) Compute the norm, $\|v\|$, of the vector v in part (a) and find a vector, \widehat{u}, of norm 1 that is in the same direction as the vector v.
Solution: The norm of v was computed to be $\|v\|=5$ in the previous part.
Set

$$
\widehat{u}=\binom{-3 / 5}{4 / 5}
$$

Then, $\|\widehat{u}\|=1$ and \widehat{u} is in the same direction as that of v.
2. Let P, Q and v be as in Problem 1 .
(a) Give the parametric equations of the line through the points P and Q.

Solution: The parametric equations of the line through P and Q are

$$
\left\{\begin{array}{l}
x=-3 t+1 ; \\
y=4 t-1,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

(b) Give the parametric equations of the line through P that is perpendicular to the line found in part (a).
Solution: The slope of the line found in part (a) is

$$
m=\frac{4}{-3}=-\frac{4}{3}
$$

Thus, the slope of a line that is perpendicular to the line through P and Q is

$$
-\frac{1}{m}=\frac{3}{4}
$$

Thus, the equation of the line through P that is perpendicular to the line through P and Q is

$$
\begin{equation*}
y=\frac{3}{4}(x-1)-1 . \tag{1}
\end{equation*}
$$

Hence, making the parametrization

$$
\begin{equation*}
x=4 t+1, \quad \text { for } t \in \mathbb{R}, \tag{2}
\end{equation*}
$$

we get from (1) that

$$
\begin{equation*}
y=3 t-1 \tag{3}
\end{equation*}
$$

Combining (2) and (3) yields the parametrization

$$
\left\{\begin{array}{l}
x=4 t+1 ; \\
y=3 t-1,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

(c) Give a vector, w, that is perpendicular to v and such that $\|w\|=1$.

Solution: Let

$$
w=\binom{4 / 5}{3 / 5}
$$

Then, $\|w\|=1$ and w is perpendicular to v because it is parallel to a line perpendicular to v.
3. Let v denote the vector $v=\binom{a}{b}$. For a real number c, the scalar multiple $c v$ of v is defined by $c v=\binom{c a}{c b}$.
(a) Suppose that $c \neq 0$. Explain why the vector $c v$ lies in the same line through the origin as the vector v. Discuss the cases $c>0$ and $c<0$.
Solution: We consider the set of scalar multiples of v :

$$
\begin{equation*}
L=\left\{\binom{x}{y} \in \mathbb{R}^{2} \left\lvert\,\binom{ x}{y}=t\binom{a}{b}\right., t \in \mathbb{R}\right\} . \tag{4}
\end{equation*}
$$

We assume that $a>0$ and $b>0$.
A vector $\binom{x}{y}$ is in L, according to the definition of L in (4), if and only if

$$
\binom{x}{y}=\binom{a t}{b t}, \quad \text { for some } t \in \mathbb{R}
$$

from which we get the parametric equations

$$
\left\{\begin{array}{l}
x=a t ; \tag{5}\\
y=b t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

The equations in (5) are a parametrization of a straight line through the origin $(0,0)$ and the point (a, b) in \mathbb{R}^{2}. Thus, L is a straight line in the direction of the vector v. This is shown in Figure 2. Hence, all the multiples of v lie in a line through the origin along the vector v; that is, the line

Figure 2: Line generated by v
through the points $(0,0)$ and (a, b). We note that, if $t>0, t v$ lies along the direction of v; and, if $t<0, t v$ points in the opposite direction to that of v. The sketch in Figure 2 shows the vector $-\frac{1}{2} v$, for the case in which both a and b are assumed to be positive.
(b) Use the definition of the norm of vectors to verify that $\|c v\|=|c|\|v\|$, where $|c|$ is the absolute value of c.
Solution: Let $v=\binom{a}{b}$. Then, $c v=\binom{c a}{c b}$; so that,

$$
\begin{aligned}
\|c v\| & =\sqrt{(c a)^{2}+(c b)^{2}} \\
& =\sqrt{c^{2} a^{2}+c^{2} b^{2}} \\
& =\sqrt{c^{2}\left(a^{2}+b^{2}\right)} \\
& =\sqrt{c^{2}} \sqrt{a^{2}+b^{2}} .
\end{aligned}
$$

Thus, using the definition of the norm of v and the fact that $\sqrt{c^{2}}=|c|$, the absolute value of c, we get that

$$
\begin{equation*}
\|c v\|=|c|\|v\| \tag{6}
\end{equation*}
$$

which was to be shown.
(c) Suppose that $\|v\| \neq 0$ and put $c=\frac{1}{\|v\|}$. Compute $\|c v\|$. What do you conclude?

Solution: Using the result in (6), compute

$$
\begin{aligned}
\|c v\| & =\left\|\frac{1}{\|v\|} v\right\| \\
& =\left|\frac{1}{\|v\|}\right|\|v\| \\
& =\frac{1}{\|v\|}\|v\| \\
& =1
\end{aligned}
$$

Thus, $c v$ is a unit vector.
4. Let J denote and open interval of real numbers and $\sigma: J \rightarrow \mathbb{R}^{2}$ denote a differeantiable path given by

$$
\sigma(t)=\binom{x(t)}{y(t)}, \quad \text { for } t \in J
$$

Assume that $\|\sigma(t)\| \neq 0$ for all $t \in \mathbb{R}$, and define the real-value function $f: J \rightarrow$ \mathbb{R} by

$$
f(t)=\|\sigma(t)\|, \quad \text { for } t \in J
$$

Use the Chain Rule to show that f is differentiable and compute $f^{\prime}(t)$ for all $t \in J$. Give a formula for computing $f^{\prime}(t)$, for all $t \in J$, in terms of $x(t), y(t)$, $x^{\prime}(t), y^{\prime}(t)$, and $\|\sigma(t)\|$.
Solution: Compute

$$
f(t)=\sqrt{(x(t))^{2}+(y(t))^{2}}, \quad \text { for } t \in J
$$

Then, since $(x(t))^{2}+(y(t))^{2}>0$ for all $t \in J, f$ is the composition of two differentiable functions. Hence, by the Chain Rule, f is differentiable and

$$
f^{\prime}(t)=\frac{1}{2 \sqrt{(x(t))^{2}+(y(t))^{2}}} \cdot \frac{d}{d t}\left[(x(t))^{2}+(y(t))^{2}\right]
$$

so that, applying the Chain Rule again,

$$
\begin{aligned}
f^{\prime}(t) & =\frac{1}{2 \sqrt{(x(t))^{2}+(y(t))^{2}}} \cdot\left[2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)\right] \\
& =\frac{x(t) x^{\prime}(t)+y(t) y^{\prime}(t)}{\sqrt{(x(t))^{2}+(y(t))^{2}}}
\end{aligned}
$$

or, using the definition of the norm of $\sigma(t)$,

$$
\begin{equation*}
f^{\prime}(t)=\frac{x(t) x^{\prime}(t)+y(t) y^{\prime}(t)}{\|\sigma(t)\|}, \quad \text { for } t \in J \tag{7}
\end{equation*}
$$

We can rewrite (7) in terms of the dot product of $\sigma(t)$ and $\sigma^{\prime}(t)$:

$$
\begin{equation*}
f^{\prime}(t)=\frac{\sigma(t) \cdot \sigma^{\prime}(t)}{\|\sigma(t)\|}, \quad \text { for } t \in J \tag{8}
\end{equation*}
$$

5. Let P and Q denote points in the $x y$-plane with Cartesian coordinates $(1,0)$ and $(0,1)$, respectively.
(a) Give the equation of the line through P and Q in Cartesian coordinates.

Solution: The equation of the line through P and Q, in Cartesian coordinates, is

$$
x+y=1
$$

or

$$
\begin{equation*}
y=1-x \tag{9}
\end{equation*}
$$

(b) Give parametric equations of the line through P and Q.

Solution: Use the equation in (9) and the parametrization $x=t$, for $t \in \mathbb{R}$, to get

$$
\left\{\begin{array}{l}
x=t ; \tag{10}\\
y=1-t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

(c) Let

$$
\sigma(t)=\binom{x(t)}{y(t)}, \quad \text { for } t \in \mathbb{R}
$$

be the parametrization of the line through P and Q that you found in part (b).

Define $f(t)=\|\sigma(t)\|$, for all $t \in \mathbb{R}$.
Find the value of t in \mathbb{R} for which $f(t)$ is the smallest possible. Use this fact to find the point on the line through P and Q that is the closest to the origin in \mathbb{R}^{2}. Explain the reasoning leading to your answer.

Solution: Using the parametric equations in (10) we get that

$$
\begin{equation*}
\sigma(t)=\binom{t}{1-t}, \quad \text { for } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

To find the value of $t \in \mathbb{R}$ for which $f(t)=\|\sigma(t)\|$, for all $t \in \mathbb{R}$, is the smallest possible, we first find t for which $f^{\prime}(t)=0$, where $f^{\prime}(t)$ is given by (7), or (8).
Now, $f^{\prime}(t)=0$ when the numerator in (7), or (8), is 0 . Using (7), we get that $f^{\prime}(t)=0$ when

$$
x(t) x^{\prime}(t)+y(t) y^{\prime}(t)=0
$$

where

$$
x(t)=t \quad \text { and } \quad y(t)=1-t
$$

so that,

$$
x^{\prime}(t)=1 \quad \text { and } \quad y^{\prime}(t)=-1
$$

We then have that $f^{\prime}(t)=0$ when

$$
t(1)+(1-t)(-1)=0
$$

or

$$
t-1+t=0
$$

or

$$
2 t=1,
$$

from which we get that $t=\frac{1}{2}$.
Thus, the point on the line through P and Q that is closest to the origin corresponds to

$$
\sigma(1 / 2)=\binom{1 / 2}{1 / 2}
$$

