Assignment \#5

Due on Friday, February 15, 2019
Read Section 4.1, on Vectors in the Plane, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $\widehat{i}=\binom{1}{0}$ and $\widehat{j}=\binom{0}{1}$.
(a) Compute norms $\|\widehat{i}\|$ and $\widehat{j} \|$.
(b) Explain why \widehat{i} and \widehat{j} are perpendicular.
(c) Show that any vector v in \mathbb{R}^{2} can be written as

$$
v=c_{1} \widehat{i}+c_{2} \widehat{j}
$$

for some real numbers c_{1} and c_{2}.
2. Let $v=\binom{1}{2}$ and $w=\binom{2}{1}$.
(a) Compute $v+w$ and sketch it in standard position.
(b) Sketch v in standard position and sketch w with its starting point at the tip of v.
(c) Verify that

$$
\begin{equation*}
\|v+w\| \leqslant\|v\|+\|w\| \tag{1}
\end{equation*}
$$

and explain why (1) is called the triangle inequality.
(d) Given an example of vectors v and w in \mathbb{R}^{2} for which equality in (1) holds true.
3. Let v and w be as in Problem 2 and \widehat{i} be as in Problem 4. Find real numbers c_{1} and c_{2} such that

$$
c_{1} v+c_{2} w=\widehat{i}
$$

4. Let \widehat{i} and \widehat{j} be as in Problem 1 .
(a) Compute $\widehat{i}-\widehat{j}$ and $\|\widehat{i}-\widehat{j}\|$.
(b) Sketch \widehat{i} and \widehat{j} in standard position and $\widehat{i}-\widehat{j}$ with its starting point at the tip of \widehat{j}.
(c) Verify that $\|\widehat{i}-\widehat{j}\|^{2}=\|\widehat{i}\|^{2}+\|\widehat{j}\|^{2}$. Give a geometric interpretation of this result.
5. Let u be a vector in \mathbb{R}^{2} or norm 1 and let v be any vector in \mathbb{R}^{2}.
(a) Give the vector-parametric equation of the line through origin in the direction of u.
(b) Let $f(t)=\|v-t u\|^{2}$, for all $t \in \mathbb{R}$. Explain why this function gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.
(c) Give the value of t at which $f(t)$ is minimized in terms of the components of u and v.
