Assignment #5

Due on Friday, February 15, 2019

Read Section 4.1, on *Vectors in the Plane*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Do the following problems

- 1. Let $\hat{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\hat{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Compute norms $\|\hat{i}\|$ and $\hat{j}\|$.
 - (b) Explain why \hat{i} and \hat{j} are perpendicular.
 - (c) Show that any vector v in \mathbb{R}^2 can be written as

$$v = c_1 \ \widehat{i} + c_2 \ \widehat{j},$$

for some real numbers c_1 and c_2 .

2. Let
$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $w = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- (a) Compute v + w and sketch it in standard position.
- (b) Sketch v in standard position and sketch w with its starting point at the tip of v.
- (c) Verify that

$$||v + w|| \le ||v|| + ||w||, \tag{1}$$

and explain why (1) is called the triangle inequality.

- (d) Given an example of vectors v and w in \mathbb{R}^2 for which equality in (1) holds true.
- 3. Let v and w be as in Problem 2 and \hat{i} be as in Problem 4. Find real numbers c_1 and c_2 such that

$$c_1v + c_2w = i.$$

- 4. Let \hat{i} and \hat{j} be as in Problem 1.
 - (a) Compute $\hat{i} \hat{j}$ and $\|\hat{i} \hat{j}\|$.
 - (b) Sketch \hat{i} and \hat{j} in standard position and $\hat{i} \hat{j}$ with its starting point at the tip of \hat{j} .
 - (c) Verify that $\|\hat{i} \hat{j}\|^2 = \|\hat{i}\|^2 + \|\hat{j}\|^2$. Give a geometric interpretation of this result.
- 5. Let u be a vector in \mathbb{R}^2 or norm 1 and let v be any vector in \mathbb{R}^2 .
 - (a) Give the vector-parametric equation of the line through origin in the direction of u.
 - (b) Let $f(t) = ||v tu||^2$, for all $t \in \mathbb{R}$. Explain why this function gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.
 - (c) Give the value of t at which f(t) is minimized in terms of the components of u and v.