Solutions to Assignment #5

1. Let
$$\hat{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\hat{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- (a) Compute norms $\|\hat{i}\|$ and $\hat{j}\|$. **Solution:** Compute $\|\hat{i}\| = \sqrt{1^2 + 0^2} = 1$. Similarly, $\|\hat{j}\| = \sqrt{0^2 + 1^2} = 1$.
- (b) Explain why \hat{i} and \hat{j} are perpendicular. **Solution**: The vector \hat{i} in standard position lies along the *x*-axis, while \hat{j} lies along the *y*-axis. Hence, \hat{i} and \hat{j} are perpendicular.
- (c) Show that any vector v in \mathbb{R}^2 can be written as

$$v = c_1 \,\,\widehat{i} + c_2 \,\,\widehat{j},$$

for some real numbers c_1 and c_2 .

Solution: Let $v = \begin{pmatrix} a \\ b \end{pmatrix}$ be any vector in \mathbb{R}^2 . Using the definitions of vector addition and scalar multiplication we can write

$$v = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$
 (1)

Thus, since

$$\hat{i} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 and $\hat{j} = \begin{pmatrix} 0\\ 1 \end{pmatrix}$, (2)

we see from (1) that the vector v can be written as

$$v = a\hat{i} + b\hat{j}.\tag{3}$$

Setting $c_1 = a$ and $c_2 = b$ in (3), we get what we were asked to show. \Box

2. Let
$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $w = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

(a) Compute v + w and sketch it in standard position.Solution: Compute

$$v + w = \begin{pmatrix} 1\\2 \end{pmatrix} + \begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 3\\3 \end{pmatrix}$$

Figure 1 shows a sketch of v + w in standard position.

Figure 1: v, w and v + w

(b) Sketch v in standard position and sketch w with its starting point at the tip of v.

Solution: See Figure 1.

(c) Verify that

$$\|v + w\| \leqslant \|v\| + \|w\|, \tag{4}$$

and explain why (4) is called the triangle inequality, **Solution**: Compute $||v|| = \sqrt{1^2 + 2^2} = \sqrt{5}$, $||w|| = \sqrt{2^2 + 1^2} = \sqrt{5}$, and

$$\|v+w\| = \sqrt{3^2 + 3^2} = 3\sqrt{2}.$$

Note that $||v|| + ||w|| = 2\sqrt{5} \approx 4.47$ is bigger than $||v + w|| = 3\sqrt{2} \approx 4.24$. Thus, the inequality in (4) is satisfied in this case.

Referring to the sketch in Figure 1, notice that the vectors v, w and v + w are the sides of the triangle with vertices O, P_1 and P_2 , where P_1 is the tip of v (drawn in standard position) and P_2 is the tip of v + w (drawn in standard position). For this triangle to exist, the sum of the lengths of two of the sides must be grater than the length of the third side. \Box

(d) Given an example of vectors v and w in \mathbb{R}^2 for which equality in (4) holds true.

Solution: Let $v = \hat{i}$ and $w = 2\hat{i}$. Then, $v + w = 3\hat{i}$. Thus, $||v|| = ||\hat{i}|| = 1$, $||w|| = 2||\hat{i}|| = 2$, and $||v + w|| = 3||\hat{i}|| = 3$. Hence,

$$||v|| + ||w|| = 1 + 2 = 3 = ||v + w||,$$

which shows that equality in (4) holds for this example.

Math 32S. Rumbos

3. Let v and w be as in Problem 2 and \hat{i} be as in Problem 4. Find real numbers c_1 and c_2 such that

$$c_1 v + c_2 w = \hat{i}. \tag{5}$$

Solution: Rewrite the equation in (5) in terms of the vectors given in Problem 2 and Problem 4 to get

$$c_1\begin{pmatrix}1\\2\end{pmatrix}+c_2\begin{pmatrix}2\\1\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix},$$

from which we get

$$\begin{pmatrix} c_1\\2c_1 \end{pmatrix} + \begin{pmatrix} 2c_2\\c_2 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix},$$
$$\begin{pmatrix} c_1 + 2c_2\\2c_1 + c_2 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}.$$
(6)

Equating corresponding components of both sides of the equality in (6) yields the system of equations

$$\begin{cases} c_1 + 2c_2 = 1; \\ 2c_1 + c_2 = 0. \end{cases}$$
(7)

We can solve the system in (7) simultaneously by first solving for c_2 in the second equation in (7),

$$c_2 = -2c_1, \tag{8}$$

and then substituting into the first equation in (7) to get

 $c_1 + 2(-2c_1) = 1,$

or

or

$$-3c_1 = 1;$$

so that,

$$c_1 = -\frac{1}{3} \tag{9}$$

Finally, substitute (9) into (8) to get

$$c_2 = \frac{2}{3}.$$
 (10)

Hence, (9) and (10) give the values of c_1 and c_2 , respectively, that will make the statement in (5) true.

Math 32S. Rumbos

- 4. Let \hat{i} and \hat{j} be as in Problem 1.
 - (a) Compute $\hat{i} \hat{j}$ and $\|\hat{i} \hat{j}\|$. Solution: Compute

$$\hat{i} - \hat{j} = \begin{pmatrix} 1\\ 0 \end{pmatrix} - \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ -1 \end{pmatrix}.$$

Thus,

$$\|\hat{i} - \hat{j}\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}.$$

(b) Sketch \hat{i} and \hat{j} in standard position and $\hat{i} - \hat{j}$ with its starting point at the tip of \hat{j} .

Solution: See the sketch in Figure 2.

Figure 2: Sketch of \hat{i} , j and $\hat{i} - \hat{j}$

(c) Verify that $\|\hat{i} - \hat{j}\|^2 = \|\hat{i}\|^2 + \|\hat{j}\|^2$. Give a geometric interpretation of this result.

Solution: From part (a) we have that $\|\hat{i} - \hat{j}\|^2 = 2$. Since, $\|\hat{i}\| = 1$ and $\|\hat{j}\| = 1$, it follows that

$$\|\widehat{i} - \widehat{j}\|^2 = \|\widehat{i}\|^2 + \|\widehat{j}\|^2.$$
(11)

The expression in (11) is a statement of the Pythagorean Theorem for the right triangle with vertices O, P_1 and P_2 pictured in Figure 2.

5. Let u be a vector in \mathbb{R}^2 or norm 1 and let v be any vector in \mathbb{R}^2 .

Math 32S. Rumbos

(a) Give the vector-parametric equation of the line through origin in the direction of u.

Solution: The line through origin in the direction of u is parametrized by the vector equation

$$\sigma(t) = tu, \quad \text{ for all } t \in \mathbb{R}.$$

(b) Let

$$f(t) = \|v - tu\|^2, \quad \text{for all } t \in \mathbb{R}.$$
(12)

Explain why this function gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.

Solution: Figure 3 shows a sketch of the line through the origin in the direction of u. The line is labeled L in the sketch.

Figure 3: Sketch of line through the origin in the direction of u

Figure 3 also shows the vector v in standard position with its tip labeled P.

The distance from a typical point, tu, on L to the point P is the norm of the vector from tu to P, namely ||v - tu||. Hence, the function f defined in (12) gives the square of the distance from the point at v to a point on the line through the origin in the direction of u.

(c) Give the value of t at which f(t) is minimized in terms of the components of u and v.

Solution: We need to find the value of t for which f(t) given in (12) is the smallest possible. To do this, use the properties of the dot product

and the Euclidean norm to compute

$$f(t) = (v - tu) \cdot (v - tu)$$

= $v \cdot v - tv \cdot u - tu \cdot v + t^2 u \cdot u$
= $||v||^2 - 2tv \cdot u + t^2 ||u||^2;$

so that, since u is a unit vector,

$$f(t) = \|v\|^2 - 2tv \cdot u + t^2, \quad \text{for all } t \in \mathbb{R}.$$
(13)

It follows from (13) that f is differentiable with derivatives

$$f'(t) = -2v \cdot u + 2t$$
, for all $t \in \mathbb{R}$,

and

$$f''(t) = 2$$
, for all $t \in \mathbb{R}$.

Consequently, f(t) is minimized when f'(t) = 0, or when

$$t = v \cdot u. \tag{14}$$

If $v = a\hat{i} + b\hat{j}$ and $u = u_1\hat{i} + u_2\hat{j}$, where a and b are the components of v, and u_1 and u_2 are the components of u; so that $u_1^2 + u_2^2 = 1$, then the expression for t in (14) reads

$$t = au_1 + bu_2.$$