Assignment #6

Due on Monday, February 18, 2019

Read Section 4.1, on *Vectors in the Plane*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

Dot product. Given vectors $v = x_1\hat{i} + y_1\hat{j}$ and $w = x_2\hat{i} + y_2\hat{j}$, the **dot product** of v and w, denoted by $v \cdot w$, is given by $v \cdot w = x_1x_2 + y_1y_2$.

Dot product and angle between vectors. If θ denotes the angle between the vectors v and w, then the dot product of v and w is also given by $v \cdot w = ||v|| ||w|| \cos \theta$, where ||v|| and ||w|| are the Euclidean norms of v and w, respectively.

Orthogonality. Vectors v and w in \mathbb{R}^2 are said to be **orthogonal**, or perpendicular, to each other if $v \cdot w = 0$.

Do the following problems

- 1. Let $v = a\hat{i} + b\hat{j}$ be a vector in \mathbb{R}^2 such that $||v|| \neq 0$.
 - (a) Give a vector $w \in \mathbb{R}^2$ that is orthogonal to v.
 - (b) Give unit vectors \hat{v} and \hat{w} that are orthogonal to each other and such that \hat{v} is parallel to v and \hat{w} is parallel to w.
 - (c) Let \hat{v} and \hat{w} be as in part (b). Put $u = c_1 \hat{v} + c_2 \hat{w}$, for some real numbers c_1 and c_2 . Verify that

$$||u||^2 = c_1^2 + c_2^2.$$

Give and interpretation of this result.

- 2. Let v and w denote vectors in \mathbb{R}^2 .
 - (a) Use the fact that $|\cos \theta| \leq 1$ for all $\theta \in \mathbb{R}$ to show that

$$|v \cdot w| \leqslant ||v|| ||w||. \tag{1}$$

The statement in (1) is called the Cauchy–Schwarz inequality.

(b) Determine conditions on the vectors v and w under which equality occurs in (1). Explain the reasoning leading to your answer.

Math 32S. Rumbos

3. Use the Cauchy–Schwarz inequality in (1) to derive the **triangle inequality**:

$$\|v + w\| \le \|v\| + \|w\|.$$
(2)

Suggestion: Compute $||v + w||^2 = (v + w) \cdot (v + w)$ using the properties of the dot product. Then, apply the Cauchy–Schwarz inequality.

- 4. Let $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $w = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.
 - (a) Explain why v and w are orthogonal.
 - (b) Give unit vectors \hat{v} and \hat{w} that are orthogonal to each other and such that \hat{v} is parallel to v and \hat{w} is parallel to w.
 - (c) Given any vector $u = a\hat{i} + b\hat{j}$, find c_1 and c_2 , in terms of a and b, such that

$$u = c_1 \hat{v} + c_2 \hat{w}$$

 c_1 is called the component of u along the direction of v and c_2 is the component of u along the direction of w.

5. Let J denote an open interval of real numbers, and let $\sigma: J \to \mathbb{R}^2$ and $\gamma: J \to \mathbb{R}^2$ be differentiable paths given by

$$\sigma(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix} \text{ and } \gamma(t) = \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix}, \text{ for } t \in J.$$

- (a) Define $f(t) = \sigma(t) \cdot \gamma(t)$, for $t \in J$. Use the definition of the dot product and the product rule to show that f is differentiable and give a formula for computing f'(t).
- (b) Suppose that $\|\sigma(t)\| = C$, for all $t \in J$, and some constant C. Show that $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in J$.

Suggestion: Write $\|\sigma(t)\|^2 = C^2$ in terms of the dot product to get

$$\sigma(t) \cdot \sigma(t) = C^2, \quad \text{for all } t \in J.$$
(3)

Take the derivative with respect to t on both sides of the equation in (3) and use the result derived in part (a).