Assignment \#6

Due on Monday, February 18, 2019
Read Section 4.1, on Vectors in the Plane, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions.

Dot product. Given vectors $v=x_{1} \widehat{i}+y_{1} \widehat{j}$ and $w=x_{2} \widehat{i}+y_{2} \widehat{j}$, the dot product of v and w, denoted by $v \cdot w$, is given by $v \cdot w=x_{1} x_{2}+y_{1} y_{2}$.
Dot product and angle between vectors. If θ denotes the angle between the vectors v and w, then the dot product of v and w is also given by $v \cdot w=\|v\|\|w\| \cos \theta$, where $\|v\|$ and $\|w\|$ are the Euclidean norms of v and w, respectively.
Orthogonality. Vectors v and w in \mathbb{R}^{2} are said to be orthogonal, or perpendicular, to each other if $v \cdot w=0$.

Do the following problems

1. Let $v=a \widehat{i}+b \widehat{j}$ be a vector in \mathbb{R}^{2} such that $\|v\| \neq 0$.
(a) Give a vector $w \in \mathbb{R}^{2}$ that is orthogonal to v.
(b) Give unit vectors \widehat{v} and \widehat{w} that are orthogonal to each other and such that \widehat{v} is parallel to v and \widehat{w} is parallel to w.
(c) Let \widehat{v} and \widehat{w} be as in part (b). Put $u=c_{1} \widehat{v}+c_{2} \widehat{w}$, for some real numbers c_{1} and c_{2}. Verify that

$$
\|u\|^{2}=c_{1}^{2}+c_{2}^{2}
$$

Give and interpretation of this result.
2. Let v and w denote vectors in \mathbb{R}^{2}.
(a) Use the fact that $|\cos \theta| \leqslant 1$ for all $\theta \in \mathbb{R}$ to show that

$$
\begin{equation*}
|v \cdot w| \leqslant\|v\|\|w\| \tag{1}
\end{equation*}
$$

The statement in (1) is called the Cauchy-Schwarz inequality.
(b) Determine conditions on the vectors v and w under which equality occurs in (1). Explain the reasoning leading to your answer.
3. Use the Cauchy-Schwarz inequality in (1) to derive the triangle inequality:

$$
\begin{equation*}
\|v+w\| \leqslant\|v\|+\|w\| \tag{2}
\end{equation*}
$$

Suggestion: Compute $\|v+w\|^{2}=(v+w) \cdot(v+w)$ using the properties of the dot product. Then, apply the Cauchy-Schwarz inequality.
4. Let $v=\binom{1}{2}$ and $w=\binom{2}{-1}$.
(a) Explain why v and w are orthogonal.
(b) Give unit vectors \widehat{v} and \widehat{w} that are orthogonal to each other and such that \widehat{v} is parallel to v and \widehat{w} is parallel to w.
(c) Given any vector $u=a \widehat{i}+b \widehat{j}$, find c_{1} and c_{2}, in terms of a and b, such that

$$
u=c_{1} \widehat{v}+c_{2} \widehat{w} .
$$

c_{1} is called the component of u along the direction of v and c_{2} is the component of u along the direction of w.
5. Let J denote an open interval of real numbers, and let $\sigma: J \rightarrow \mathbb{R}^{2}$ and $\gamma: J \rightarrow$ \mathbb{R}^{2} be differentiable paths given by

$$
\sigma(t)=\binom{x_{1}(t)}{y_{1}(t)} \quad \text { and } \quad \gamma(t)=\binom{x_{2}(t)}{y_{2}(t)}, \quad \text { for } t \in J
$$

(a) Define $f(t)=\sigma(t) \cdot \gamma(t)$, for $t \in J$. Use the definition of the dot product and the product rule to show that f is differentiable and give a formula for computing $f^{\prime}(t)$.
(b) Suppose that $\|\sigma(t)\|=C$, for all $t \in J$, and some constant C. Show that $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in J$.
Suggestion: Write $\|\sigma(t)\|^{2}=C^{2}$ in terms of the dot product to get

$$
\begin{equation*}
\sigma(t) \cdot \sigma(t)=C^{2}, \quad \text { for all } t \in J \tag{3}
\end{equation*}
$$

Take the derivative with respect to t on both sides of the equation in (3) and use the result derived in part (a).

