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Solutions to Assignment #6

1. Let v = âi+ bĵ be a vector in R2 such that ‖v‖ 6= 0.

(a) Give a vector w ∈ R2 that is orthogonal to v.

Solution: Set w = b̂i− aĵ. Then,

v · w = ab− ab = 0.

so that w is orthogonal to v. �

(b) Give unit vectors v̂ and ŵ that are orthogonal to each other and such that
v̂ is parallel to v and ŵ is parallel to w.

Solution:

v̂ =
1

‖v‖
v,

where ‖v‖ =
√
a2 + b2., and

ŵ =
1

‖w‖
w,

where ‖w‖ =
√
b2 + (−a)2 =

√
a2 + b2.

Hence,

v̂ =
a√

a2 + b2
î+

b√
a2 + b2

ĵ

and

ŵ =
b√

a2 + b2
î− a√

a2 + b2
ĵ.

�

(c) Let v̂ and ŵ be as in part (b). Put u = c1v̂ + c2ŵ, for some real numbers
c1 and c2. Verify that

‖u‖2 = c21 + c22. (1)

Give and interpretation of this result.

Solution: Let u = c1v̂ + c2ŵ and compute

‖u‖2 = (c1v̂ + c2ŵ) · (c1v̂ + c2ŵ)

= c21v̂ · v̂ + c1c2v̂ · ŵ) + c2c1ŵ · v̂ + c22ŵ · ŵ;
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Figure 1: Vectors v and w

so that,
‖u‖2 = c21‖v̂‖2 + 2c1c2v̂ · ŵ + c22‖ŵ‖2. (2)

Now, since ‖v̂‖ = ‖ŵ‖ = 1, and v̂ · ŵ = 0, (1) follows from (2).

An interpretation of (1) can be seen in Figure 1. Consider the triangle
with vertices at the origin, O, the tip of c2ŵ, and the tip of u shown in
the Figure. Note that, by the parallelogram rule of vector addition, this
triangle is a right triangle, since v and w are orthogonal. The hypotenuse
of this triangle is u, of length ‖u‖, and the legs of the triangle are c1v̂, of
length |c1|, and c2ŵ, of length |c2|. �

2. Let v and w denote vectors in R2.

(a) Use the fact that | cos θ| 6 1 for all θ ∈ R to show that

|v · w| 6 ‖v‖‖w‖. (3)

The statement in (3) is called the Cauchy–Schwarz inequality.

Solution: Start with
v · w = ‖v‖‖w‖ cos θ, (4)

where θ is the angle between v and w.

Take absolute value on both sides of (4) to get

|v · w| = ‖v‖‖w‖| cos θ|. (5)
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Then, since | cos θ| 6 1, we get from (5) that

|v · w| 6 ‖v‖‖w‖,

which is the inequality in (3). �

(b) Determine conditions on the vectors v and w under which equality occurs
in (3). Explain the reasoning leading to your answer.

Solution: Equality in (3) occurs when

|v · w| = ‖v‖‖w‖. (6)

Comparing (6) and (5), we see that equality in (3) occurs when

| cos θ| = 1;

Thus, equality in (3) occurs when θ = 0 or θ = π. Hence, equality in (3)
occurs when v and w lie on the same line. �

3. Use the Cauchy–Schwarz inequality in (3) to derive the triangle inequality:

‖v + w‖ 6 ‖v‖+ ‖w‖. (7)

Suggestion: Compute ‖v + w‖2 = (v + w) · (v + w) using the properties of the
dot product. Then, apply the Cauchy–Schwarz inequality.

Solution: Compute

‖v + w‖2 = (v + w) · (v + w)

= v · v + v · w + w · v + w · w;

so that,
‖v + w‖2 = ‖v‖2 + 2v · w + ‖w‖2. (8)

Now, since v · w 6 |v · w|, we obtain from (8) the inequality

‖v + w‖2 6 ‖v‖2 + 2|v · w|+ ‖w‖2. (9)

Then, applying the Cauchy–Schwarz inequality to the middle term of the right–
hand side of (9),

‖v + w‖2 6 ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2. (10)
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The right–hand side of (10) can be factored to yield the inequality

‖v + w‖2 6 (‖v‖+ ‖w‖)2. (11)

Finally, taking square roots on both sided of the inequality in (11) yields the
triangle inequality in (7). �

4. Let v =

(
1
2

)
and w =

(
2
−1

)
.

(a) Explain why v and w are orthogonal.

Solution: Compute the dot product

v · w = (1)(2) + (2)(−1) = 0.

Thus, v and w are orthogonal. �

(b) Give unit vectors v̂ and ŵ that are orthogonal to each other and such that
v̂ is parallel to v and ŵ is parallel to w.

Solution: Compute

v̂ =
1

‖v‖
v,

where ‖v‖ =
√

12 + 22 =
√

5; so that,

v̂ =
1√
5

(
1
2

)
=

(
1/
√

5

2/
√

5

)
. (12)

Similarly,

ŵ =

(
2/
√

5

−1/
√

5

)
. (13)

�

(c) Given any vector u = âi+ bĵ, find c1 and c2, in terms of a and b, such that

u = c1v̂ + c2ŵ.

c1 is called the component of u along the direction of v and c2 is the
component of u along the direction of w.

Solution: Start with the equation

c1v̂ + c2ŵ = u. (14)
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Take the dot product with v̂ on both sides of (14) to get

(c1v̂ + c2ŵ) · v̂ = u · v̂;

so that, using the distributive property,

c1v̂ · v̂ + c2ŵ · v̂ = u · v̂.

Then, since v̂ · v̂ = ‖v̂‖2 = 1 and ŵ · v̂ = 0,

c1 = u · v̂. (15)

Similarly,
c2 = u · ŵ. (16)

To find c1 and c2 in (15) and (16), respectively, use the values of v̂) and ŵ)
in (12) and (13), respectively, along with the fact that u = âi+ bĵ, to get

c1 =
a√
5

+
2b√

5

and

c2 =
2a√

5
− b√

5
.

�

5. Let J denote an open interval of real numbers, and let σ : J → R2 and γ : J →
R2 be differentiable paths given by

σ(t) =

(
x1(t)
y1(t)

)
and γ(t) =

(
x2(t)
y2(t)

)
, for t ∈ J. (17)

(a) Define f(t) = σ(t) · γ(t), for t ∈ J . Use the definition of the dot product
and the product rule to show that f is differentiable and give a formula
for computing f ′(t).

Solution: Use the definitions of σ and γ in (17) and the definition of the
dot product to compute

f(t) = x1(t)x2(t) + y1(t)y2(t), for t ∈ J. (18)

Note that, according to (18), f is a sum of products of differentiable func-
tions. Hence, by the product rule, f is differentiable and

f ′(t) = x1(t)x
′
2(t) + x′1(t)x2(t) + y1(t)y

′
2(t) + y′1(t)y2(t), for t ∈ J,
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or

f ′(t) = x1(t)x
′
2(t) + y1(t)y

′
2(t) + x′1(t)x2(t) + y′1(t)y2(t), for t ∈ J ;

so that, using the definition of the dot product,

f ′(t) = σ(t) · γ′(t) + σ′(t) · γ(t), for t ∈ J ; (19)

�

(b) Suppose that ‖σ(t)‖ = C, for all t ∈ J , and some constant C. Show that
σ′(t) is orthogonal to σ(t) for all t ∈ J .

Suggestion: Write ‖σ(t)‖2 = C2 in terms of the dot product to get

σ(t) · σ(t) = C2, for all t ∈ J. (20)

Take the derivative with respect to t on both sides of the equation in (20)
and use the result derived in part (a).

Solution: Differentiate with respect to t on both sides of (20) to get

d

dt
[σ(t) · σ(t)] = 0, for all t ∈ J, (21)

since C2 is constant. Then, applying the formula in (19) on the left–hand
side of (21),

σ(t) · σ′(t) + σ′(t) · σ(t) = 0, for all t ∈ J,

or
2σ(t) · σ′(t) = 0, for all t ∈ J,

or
σ(t) · σ′(t) = 0, for all t ∈ J,

which shows that σ′(t) is orthogonal to σ(t) for all t ∈ J . �


