Solutions to Assignment \#6

1. Let $v=a \widehat{i}+b \widehat{j}$ be a vector in \mathbb{R}^{2} such that $\|v\| \neq 0$.
(a) Give a vector $w \in \mathbb{R}^{2}$ that is orthogonal to v.

Solution: Set $w=b \widehat{i}-a \widehat{j}$. Then,

$$
v \cdot w=a b-a b=0
$$

so that w is orthogonal to v.
(b) Give unit vectors \widehat{v} and \widehat{w} that are orthogonal to each other and such that \widehat{v} is parallel to v and \widehat{w} is parallel to w.

Solution:

$$
\widehat{v}=\frac{1}{\|v\|} v
$$

where $\|v\|=\sqrt{a^{2}+b^{2}}$., and

$$
\widehat{w}=\frac{1}{\|w\|} w
$$

where $\|w\|=\sqrt{b^{2}+(-a)^{2}}=\sqrt{a^{2}+b^{2}}$.
Hence,

$$
\widehat{v}=\frac{a}{\sqrt{a^{2}+b^{2}}} \widehat{i}+\frac{b}{\sqrt{a^{2}+b^{2}}} \widehat{j}
$$

and

$$
\widehat{w}=\frac{b}{\sqrt{a^{2}+b^{2}}} \widehat{i}-\frac{a}{\sqrt{a^{2}+b^{2}}} \widehat{j}
$$

(c) Let \widehat{v} and \widehat{w} be as in part (b). Put $u=c_{1} \widehat{v}+c_{2} \widehat{w}$, for some real numbers c_{1} and c_{2}. Verify that

$$
\begin{equation*}
\|u\|^{2}=c_{1}^{2}+c_{2}^{2} \tag{1}
\end{equation*}
$$

Give and interpretation of this result.
Solution: Let $u=c_{1} \widehat{v}+c_{2} \widehat{w}$ and compute

$$
\begin{aligned}
\|u\|^{2} & =\left(c_{1} \widehat{v}+c_{2} \widehat{w}\right) \cdot\left(c_{1} \widehat{v}+c_{2} \widehat{w}\right) \\
& \left.=c_{1}^{2} \widehat{v} \cdot \widehat{v}+c_{1} c_{2} \widehat{v} \cdot \widehat{w}\right)+c_{2} c_{1} \widehat{w} \cdot \widehat{v}+c_{2}^{2} \widehat{w} \cdot \widehat{w}
\end{aligned}
$$

Figure 1: Vectors v and w
so that,

$$
\begin{equation*}
\|u\|^{2}=c_{1}^{2}\|\widehat{v}\|^{2}+2 c_{1} c_{2} \widehat{v} \cdot \widehat{w}+c_{2}^{2}\|\widehat{w}\|^{2} \tag{2}
\end{equation*}
$$

Now, since $\|\widehat{v}\|=\|\widehat{w}\|=1$, and $\widehat{v} \cdot \widehat{w}=0$, (1) follows from (2).
An interpretation of (1) can be seen in Figure 1. Consider the triangle with vertices at the origin, O, the tip of $c_{2} \widehat{w}$, and the tip of u shown in the Figure. Note that, by the parallelogram rule of vector addition, this triangle is a right triangle, since v and w are orthogonal. The hypotenuse of this triangle is u, of length $\|u\|$, and the legs of the triangle are $c_{1} \widehat{v}$, of length $\left|c_{1}\right|$, and $c_{2} \widehat{w}$, of length $\left|c_{2}\right|$.
2. Let v and w denote vectors in \mathbb{R}^{2}.
(a) Use the fact that $|\cos \theta| \leqslant 1$ for all $\theta \in \mathbb{R}$ to show that

$$
\begin{equation*}
|v \cdot w| \leqslant\|v\|\|w\| \tag{3}
\end{equation*}
$$

The statement in (3) is called the Cauchy-Schwarz inequality.
Solution: Start with

$$
\begin{equation*}
v \cdot w=\|v\|\|w\| \cos \theta \tag{4}
\end{equation*}
$$

where θ is the angle between v and w.
Take absolute value on both sides of (4) to get

$$
\begin{equation*}
|v \cdot w|=\|v\|\|w\||\cos \theta| \tag{5}
\end{equation*}
$$

Then, since $|\cos \theta| \leqslant 1$, we get from (5) that

$$
|v \cdot w| \leqslant\|v\|\|w\|
$$

which is the inequality in (3).
(b) Determine conditions on the vectors v and w under which equality occurs in (3). Explain the reasoning leading to your answer.
Solution: Equality in (3) occurs when

$$
\begin{equation*}
|v \cdot w|=\|v\|\|w\| . \tag{6}
\end{equation*}
$$

Comparing (6) and (5), we see that equality in (3) occurs when

$$
|\cos \theta|=1
$$

Thus, equality in (3) occurs when $\theta=0$ or $\theta=\pi$. Hence, equality in (3) occurs when v and w lie on the same line.
3. Use the Cauchy-Schwarz inequality in (3) to derive the triangle inequality:

$$
\begin{equation*}
\|v+w\| \leqslant\|v\|+\|w\| \tag{7}
\end{equation*}
$$

Suggestion: Compute $\|v+w\|^{2}=(v+w) \cdot(v+w)$ using the properties of the dot product. Then, apply the Cauchy-Schwarz inequality.
Solution: Compute

$$
\begin{aligned}
\|v+w\|^{2} & =(v+w) \cdot(v+w) \\
& =v \cdot v+v \cdot w+w \cdot v+w \cdot w
\end{aligned}
$$

so that,

$$
\begin{equation*}
\|v+w\|^{2}=\|v\|^{2}+2 v \cdot w+\|w\|^{2} \tag{8}
\end{equation*}
$$

Now, since $v \cdot w \leqslant|v \cdot w|$, we obtain from (8) the inequality

$$
\begin{equation*}
\|v+w\|^{2} \leqslant\|v\|^{2}+2|v \cdot w|+\|w\|^{2} . \tag{9}
\end{equation*}
$$

Then, applying the Cauchy-Schwarz inequality to the middle term of the righthand side of (9),

$$
\begin{equation*}
\|v+w\|^{2} \leqslant\|v\|^{2}+2\|v\|\|w\|+\|w\|^{2} \tag{10}
\end{equation*}
$$

The right-hand side of (10) can be factored to yield the inequality

$$
\begin{equation*}
\|v+w\|^{2} \leqslant(\|v\|+\|w\|)^{2} . \tag{11}
\end{equation*}
$$

Finally, taking square roots on both sided of the inequality in (11) yields the triangle inequality in (7).
4. Let $v=\binom{1}{2}$ and $w=\binom{2}{-1}$.
(a) Explain why v and w are orthogonal.

Solution: Compute the dot product

$$
v \cdot w=(1)(2)+(2)(-1)=0
$$

Thus, v and w are orthogonal.
(b) Give unit vectors \widehat{v} and \widehat{w} that are orthogonal to each other and such that \widehat{v} is parallel to v and \widehat{w} is parallel to w.
Solution: Compute

$$
\widehat{v}=\frac{1}{\|v\|} v
$$

where $\|v\|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$; so that,

$$
\begin{equation*}
\widehat{v}=\frac{1}{\sqrt{5}}\binom{1}{2}=\binom{1 / \sqrt{5}}{2 / \sqrt{5}} . \tag{12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\widehat{w}=\binom{2 / \sqrt{5}}{-1 / \sqrt{5}} \tag{13}
\end{equation*}
$$

(c) Given any vector $u=a \widehat{i}+b \widehat{j}$, find c_{1} and c_{2}, in terms of a and b, such that

$$
u=c_{1} \widehat{v}+c_{2} \widehat{w} .
$$

c_{1} is called the component of u along the direction of v and c_{2} is the component of u along the direction of w.
Solution: Start with the equation

$$
\begin{equation*}
c_{1} \widehat{v}+c_{2} \widehat{w}=u \tag{14}
\end{equation*}
$$

Take the dot product with \widehat{v} on both sides of (14) to get

$$
\left(c_{1} \widehat{v}+c_{2} \widehat{w}\right) \cdot \widehat{v}=u \cdot \widehat{v}
$$

so that, using the distributive property,

$$
c_{1} \widehat{v} \cdot \widehat{v}+c_{2} \widehat{w} \cdot \widehat{v}=u \cdot \widehat{v}
$$

Then, since $\widehat{v} \cdot \widehat{v}=\|\widehat{v}\|^{2}=1$ and $\widehat{w} \cdot \widehat{v}=0$,

$$
\begin{equation*}
c_{1}=u \cdot \widehat{v} \tag{15}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
c_{2}=u \cdot \widehat{w} . \tag{16}
\end{equation*}
$$

To find c_{1} and c_{2} in (15) and (16), respectively, use the values of \widehat{v}) and \widehat{w}) in (12) and (13), respectively, along with the fact that $u=a \widehat{i}+b \widehat{j}$, to get

$$
c_{1}=\frac{a}{\sqrt{5}}+\frac{2 b}{\sqrt{5}}
$$

and

$$
c_{2}=\frac{2 a}{\sqrt{5}}-\frac{b}{\sqrt{5}} .
$$

5. Let J denote an open interval of real numbers, and let $\sigma: J \rightarrow \mathbb{R}^{2}$ and $\gamma: J \rightarrow$ \mathbb{R}^{2} be differentiable paths given by

$$
\begin{equation*}
\sigma(t)=\binom{x_{1}(t)}{y_{1}(t)} \quad \text { and } \quad \gamma(t)=\binom{x_{2}(t)}{y_{2}(t)}, \quad \text { for } t \in J \tag{17}
\end{equation*}
$$

(a) Define $f(t)=\sigma(t) \cdot \gamma(t)$, for $t \in J$. Use the definition of the dot product and the product rule to show that f is differentiable and give a formula for computing $f^{\prime}(t)$.
Solution: Use the definitions of σ and γ in (17) and the definition of the dot product to compute

$$
\begin{equation*}
f(t)=x_{1}(t) x_{2}(t)+y_{1}(t) y_{2}(t), \quad \text { for } t \in J \tag{18}
\end{equation*}
$$

Note that, according to (18), f is a sum of products of differentiable functions. Hence, by the product rule, f is differentiable and

$$
f^{\prime}(t)=x_{1}(t) x_{2}^{\prime}(t)+x_{1}^{\prime}(t) x_{2}(t)+y_{1}(t) y_{2}^{\prime}(t)+y_{1}^{\prime}(t) y_{2}(t), \quad \text { for } t \in J
$$

or

$$
f^{\prime}(t)=x_{1}(t) x_{2}^{\prime}(t)+y_{1}(t) y_{2}^{\prime}(t)+x_{1}^{\prime}(t) x_{2}(t)+y_{1}^{\prime}(t) y_{2}(t), \text { for } t \in J
$$

so that, using the definition of the dot product,

$$
\begin{equation*}
f^{\prime}(t)=\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t), \quad \text { for } t \in J \tag{19}
\end{equation*}
$$

(b) Suppose that $\|\sigma(t)\|=C$, for all $t \in J$, and some constant C. Show that $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in J$.
Suggestion: Write $\|\sigma(t)\|^{2}=C^{2}$ in terms of the dot product to get

$$
\begin{equation*}
\sigma(t) \cdot \sigma(t)=C^{2}, \quad \text { for all } t \in J \tag{20}
\end{equation*}
$$

Take the derivative with respect to t on both sides of the equation in (20) and use the result derived in part (a).
Solution: Differentiate with respect to t on both sides of (20) to get

$$
\begin{equation*}
\frac{d}{d t}[\sigma(t) \cdot \sigma(t)]=0, \quad \text { for all } t \in J \tag{21}
\end{equation*}
$$

since C^{2} is constant. Then, applying the formula in (19) on the left-hand side of (21),

$$
\sigma(t) \cdot \sigma^{\prime}(t)+\sigma^{\prime}(t) \cdot \sigma(t)=0, \quad \text { for all } t \in J
$$

or

$$
2 \sigma(t) \cdot \sigma^{\prime}(t)=0, \quad \text { for all } t \in J
$$

or

$$
\sigma(t) \cdot \sigma^{\prime}(t)=0, \quad \text { for all } t \in J
$$

which shows that $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in J$.

