Solutions to Assignment \#7

1. Give a formula defining the vector field $F(x, y)=f(x, y) \hat{i}+g(x, y) \hat{j}$, where f and g are real valued functions defined on the plane, whose picture is shown below.

Solution: $F(x, y)=x \hat{i}+y \hat{j}$, for all $(x, y) \in \mathbb{R}^{2}$.
2. Give a formula defining the vector field $\vec{F}(x, y)=f(x, y) \vec{i}+g(x, y) \widehat{j}$, where f and g are real valued functions defined on the plane, whose picture is shown below.

Solution: $F(x, y)=\hat{i}$, for all $(x, y) \in \mathbb{R}^{2}$.
3. Sketch the vector field $F(x, y)=2 \hat{i}+3 \hat{j}$,

Solution: Some of the vectors in the vector field are sketched in Figure 1.
4. Sketch the vector field $F(x, y)=y \hat{j}$,

Solution: Some of the vectors in the vector field are sketched in Figure 2.

Figure 1: Sketch of Vector Field in Problem 3
5. Sketch the vector field $F(v)=\frac{1}{\|v\|} v$, where $v=x \hat{i}+y \hat{j} \neq(0,0)$.

Solution: At each point in (x, y) in the $x y$-plane, $F(x, y)$ is a unit vector placed at (x, y) in the direction of $x \hat{i}+y \hat{j}$; that is, the vector points radially away from the origin. So of these vectors are sketched in Figure 3.

Figure 2: Sketch of Vector Field in Problem 4

Figure 3: Sketch of Vector Field in Problem 5

