Solutions to Assignment \#9

1. In this problem, you will sketch the flow of the vector field

$$
\begin{equation*}
F(x, y)=y \hat{i}+x \hat{j}, \quad \text { for all }(x, y) \in \mathbb{R}^{2} . \tag{1}
\end{equation*}
$$

The flow of the vector field in (1) are the solution curves of the system of differential equations

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{2}\\
\dot{y}=x
\end{array}\right.
$$

(a) Use the expression

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}, \quad \text { for } \dot{x} \neq 0 \tag{3}
\end{equation*}
$$

and the differential equations in (2) to obtain a differential equation involving only the variables x and y.
Solution: Substituting the equations in (2) into (3) yields

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x}{y} . \tag{4}
\end{equation*}
$$

(b) Use separation of variables to solve the differential equations derived in part (a).
Solution: The differential equation in (4) can be solved by separating variables:

$$
\begin{equation*}
y d y=x d x \tag{5}
\end{equation*}
$$

Integrating on both sides of (5),

$$
\int y d y=\int x d x
$$

yields

$$
\begin{equation*}
\frac{1}{2} y^{2}=\frac{1}{2} x^{2}+c_{1}, \tag{6}
\end{equation*}
$$

for some constant of integration c_{1}.
Multiply on both sides of the equation by 2 and setting $C=-2 c_{1}$, we obtain from (6) that

$$
\begin{equation*}
x^{2}-y^{2}=C \tag{7}
\end{equation*}
$$

(c) Sketch all possible solution curves obtained in part (b).

Solution: We consider three cases in (7):
(i) $C=0$,
(ii) $C>0$, and
(iii) $C<0$.

In the case $C=0,(7)$ yields

$$
x^{2}-y^{2}=0,
$$

or

$$
(x+y)(x-y)=0
$$

from which we get the two equations

$$
\begin{equation*}
y=x \quad \text { or } \quad y=-x \tag{8}
\end{equation*}
$$

Note that the lines in (8) correspond to five trajectories in the flow of the vector field in (1): The point where the two lines in (8) meet corresponds the equilibrium point $(0,0)$ of the system in (2). This is shown as a dot in Figure 1. The other other four trajectories correspond to the portions of the lines in each of the four quadrants. These are shown in the sketch in Figure 1 with their respective directions indicated on them.
In the case in which $C>0$, the graph of the equation in (7) consists of hyperbolas with x-intercepts $\pm \sqrt{C}$. Each of the branches of the the hyperbolas correspond to different trajectories of the system in (2). Four of those trajectories are sketched in Figure 1 with the directions indicated on them.
Finally, in the case $C<0$, the graph of the equation in (7) consists of hyperbolas with y-intercepts $\pm \sqrt{-C}$. Each of the branches of the the hyperbolas correspond to different trajectories of the system in (2). Four of those trajectories are sketched in Figure 1 with the directions indicated on them.
(d) Indicate the directions along the solution curves of the system in (2) in the sketch obtained in part (c).
Solution: To determine the direction of the trajectories sketched in Figure 1, look at the signs of \dot{x} and \dot{y} given by the differential equations in each of the four quadrants; these, are shown in Figure 1. For instance, in the first quadrant, $\dot{x}>0$ and $\dot{y}>0$; thus, x and y increase as t increases; consequently, the direction on the trajectories in the first quadrant is to

Figure 1: Sketch of Flow of Vector Field
the right and upwards. Thus the trajectory on the portion of the line $y=x$ in the first quadrant appears to be emanating from the origin and moving away from it. By the same token, in the second quadrant, $\dot{x}>0$ and $\dot{y}<0$; so that, x increases and y decreases at t increases; thus, the direction on the trajectories in the second quadrant is to the right and downwards. Thus the trajectory on the portion of the line $y=-x$ in the second quadrant appears to be tending towards the origin.
2. The Hyperbolic Functions. The hyperbolic cosine function, denoted by cosh, is the function cosh: $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\cosh (t)=\frac{e^{t}+e^{-t}}{2}, \quad \text { for } t \in \mathbb{R} \tag{9}
\end{equation*}
$$

and the hyperbolic sine function, denoted $\sinh : \mathbb{R} \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
\sinh (t)=\frac{e^{t}-e^{-t}}{2}, \quad \text { for } t \in \mathbb{R} \tag{10}
\end{equation*}
$$

Let $x(t)=\cosh (t)$ and $y(t)=\sinh (t)$, for all $t \in \mathbb{R}$, where cosh and sinh are defined in (9) and (10), respectively.
(a) Verify that $\dot{x}=y$ and $\dot{y}=x$.

Solution: Use (9) to compute

$$
\begin{aligned}
\dot{x} & =\frac{d}{d t}[\cosh (t)] \\
& =\frac{d}{d t}\left[\frac{e^{t}+e^{-t}}{2}\right] \\
& =\frac{e^{t}-e^{-t}}{2}
\end{aligned}
$$

so that, in view of (10),

$$
\dot{x}=\sinh (t)=y
$$

which was to be shown.
Similarly, using (10), we compute

$$
\begin{aligned}
\dot{y} & =\frac{d}{d t}[\sinh (t)] \\
& =\frac{d}{d t}\left[\frac{e^{t}-e^{-t}}{2}\right] \\
& =\frac{e^{t}+e^{-t}}{2}
\end{aligned}
$$

so that, in view of (9),

$$
\dot{y}=\cosh (t)=x
$$

which was to be shown.
(b) Verify that $x^{2}-y^{2}=1$.

Solution: Use (9) and (10) to compute

$$
\begin{aligned}
x^{1}-y^{2} & =(\cosh (t))^{2}-(\sinh (t))^{2} \\
& =\left(\frac{e^{t}+e^{-t}}{2}\right)^{2}-\left(\frac{e^{t}-e^{-t}}{2}\right)^{2}
\end{aligned}
$$

so that,

$$
x^{1}-y^{2}=\frac{\left(e^{t}+e^{-t}\right)^{2}}{4}-\frac{\left(e^{t}-e^{-t}\right)^{2}}{4}
$$

or

$$
\begin{aligned}
x^{1}-y^{2} & =\frac{e^{2 t}+2+e^{-2 t}}{4}-\frac{e^{2 t}-2+e^{-2 t}}{4} \\
& =\frac{e^{2 t}+2+e^{-2 t}-e^{2 t}+2-e^{-2 t}}{4} \\
& =\frac{4}{4}
\end{aligned}
$$

so that, $x^{2}-y^{2}=1$, which was to be shown.
(c) Sketch the curve parametrized by

$$
\sigma(t)=x(t) \hat{i}+y(t) \hat{j}, \quad \text { for all } t \in \mathbb{R}
$$

Indicate the direction given by the parametrization in the sketch.
Solution: See the sketch in Figure 2.

Figure 2: Sketch of $\sigma(t)$
(d) Give the equation of the tangent line to the curve at the point $(1,0)$.

Solution: The point $(1,0)$ corresponds to $t=0$. The direction of the
tangent line to the path at $(1,0)$ is $\sigma^{\prime}(0)$, where

$$
\begin{aligned}
\sigma^{\prime}(t) & =\dot{x}(t) \hat{i}+\dot{y}(t) \hat{j} \\
& =\sinh (t) \hat{i}+\cosh (t) \hat{j}
\end{aligned}
$$

so that,

$$
\sigma^{\prime}(0)=\sinh (0) \hat{i}+\cosh (0) \hat{j}=\hat{j}
$$

Thus, the vector-parametric equation of the tangent line to the path σ at $(1,0)$ is

$$
\ell(t)=\binom{1}{0}+t\binom{0}{1}, \quad \text { for } t \in \mathbb{R}
$$

or

$$
\ell(t)=\binom{1}{t}, \quad \text { for } t \in \mathbb{R}
$$

This is equivalent to to the parametric equations

$$
\left\{\begin{array}{l}
x=1 ; \\
y=t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

or the vertical line $x=1$.
3. Consider a differentiable path $\sigma: J \rightarrow \mathbb{R}^{2}$ given by $\sigma(t)=\binom{x(t)}{y(t)}$, for $t \in J$, where J is an open interval
Let $r(t)$ denote the norm of $\sigma(t)$ for all $t \in J$ and $\theta(t)$ denote the angle that $\sigma(t)$ makes with the positive x-axis.
(a) Give formulas for computing $r(t)$ and $\theta(t)$, for $t \in J$, in terms of $x(t)$ and $y(t)$ for $t \in J$.

Solution: Refer to the sketch in Figure 3.

The formula for $r(t)$,

$$
\begin{equation*}
r(t)=\sqrt{(x(t))^{2}+(y(t))^{2}}, \quad \text { for all } t \in J \tag{11}
\end{equation*}
$$

can be obtained from the sketch in the figure by applying the Pythagorean Theorem, or by using the definition of the Euclidean norm.

Figure 3: Sketch of path $\sigma(t)$

By the same token, using properties of right triangles and the definitions of trigonometric functions, we obtain that

$$
\begin{equation*}
\tan (\theta(t))=\frac{y(t)}{x(t)} \tag{12}
\end{equation*}
$$

provided that $x(t) \neq 0$, from which we get

$$
\begin{equation*}
\theta(t)=\arctan \left(\frac{y(t)}{x(t)}\right), \quad \text { provided } x(t) \neq 0 \tag{13}
\end{equation*}
$$

(b) Explain why the equations

$$
\left\{\begin{array}{l}
x(t)=r(t) \cos (\theta(t)) ; \tag{14}\\
y(t)=r(t) \sin (\theta(t)),
\end{array} \quad \text { for } t \in J,\right.
$$

are true.
Solution: Refer to the sketch in Figure 3 and use the definitions of the trigonometric functions in right triangles to obtain the equations in (14). Indeed, the triangles with sides of lengths $x(t), y(t)$ and $r(t)$ in the figure is a right with hypotenuse of length $r(t)$. The side adjacent to the angle $\theta(t)$ has length $x(t)$ and the opposite side has length $y(t)$, as shown in Figure 3.
4. Let σ, r and θ be as defined in Problem 3.

Assume that $\sigma(t)$ is not the zero vector for all $t \in J$. Use the formulas in derived in Problem 3 to explain why r and θ are differentiable functions of t, and verify that

$$
\left\{\begin{array}{l}
\dot{r}=\frac{\dot{x}}{r} \cdot x+\frac{\dot{y}}{r} \cdot y \tag{15}\\
\dot{\theta}=\frac{\dot{y}}{r^{2}} \cdot x-\frac{\dot{x}}{r^{2}} \cdot y
\end{array}\right.
$$

Suggestion: Begin with the equations $r^{2}=x^{2}+y^{2}$ and $\tan \theta=\frac{y}{x}$; differentiate on both sides with respect to t; and apply the Chain Rule.
Solution: Since we are assuming that $\sigma(t)$ is not the zero vector for any $t \in J$, it follows from (11) and the Chain Rule that the function r given in (11) is a differentiable function of t because it is a composition of differentiable functions.

Similarly, in view of (13), we see that θ is a differentiabld function of t, by virtue of the Chain Rule.
We get from (11) that

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} \tag{16}
\end{equation*}
$$

and from (12), or (13), that

$$
\begin{equation*}
\tan \theta=\frac{y}{x} \tag{17}
\end{equation*}
$$

We would like to obtain expressions for the derivatives of r and t with respect to t in terms of \dot{x} and \dot{y}.
Taking the derivative with respect to t on both sides of the expression in (16) and using the Chain Rule, we obtain

$$
2 r \frac{d r}{d t}=2 x \dot{x}+2 y \dot{y}
$$

from which we get

$$
\begin{equation*}
\frac{d r}{d t}=\frac{1}{r}(x \dot{x}+y \dot{y}), \quad \text { for } r>0 \tag{18}
\end{equation*}
$$

Similarly, taking the derivative with respect to t on both sides of (17) and applying the Chain Rule and the Quotient Rule,

$$
\sec ^{2} \theta \frac{d \theta}{d t}=\frac{x \dot{y}-y \dot{x}}{x^{2}}, \quad \text { for } x \neq 0
$$

so that, using the trigonometric identity

$$
1+\tan ^{2} \theta=\sec ^{2} \theta
$$

and (17),

$$
\begin{equation*}
\left(1+\frac{y^{2}}{x^{2}}\right) \frac{d \theta}{d t}=\frac{x \dot{y}-y \dot{x}}{x^{2}}, \quad \text { for } x \neq 0 \tag{19}
\end{equation*}
$$

Next, multiply both sides of the equation in (19) by x^{2}, for $x \neq 0$, to get

$$
\left(x^{2}+y^{2}\right) \frac{d \theta}{d t}=x \dot{y}-y \dot{x}
$$

so that, in view of (16),

$$
\begin{equation*}
\frac{d \theta}{d t}=\frac{1}{r^{2}}(x \dot{y}-y \dot{x}), \quad \text { for } r>0 \tag{20}
\end{equation*}
$$

Combine the equations in (18) and (20) to obtain the change of variables equations

$$
\left\{\begin{align*}
\dot{r} & =\frac{1}{r}(x \dot{x}+y \dot{y}) \tag{21}\\
\dot{\theta} & =\frac{1}{r^{2}}(x \dot{y}-y \dot{x})
\end{align*}\right.
$$

Note that the equations in (21) are the equations in (15), which we were asked to derive.
5. In this problem we find the solutions of the system

$$
\left\{\begin{array}{l}
\dot{x}=-\beta y \tag{22}\\
\dot{y}=\beta x
\end{array}\right.
$$

where $\beta>0$.
(a) Assume the equations in (22) are true, and use the equations in (15) to obtain a system of the form

$$
\left\{\begin{array}{l}
\dot{r}=f(r, \theta) \tag{23}\\
\dot{\theta}=g(r, \theta)
\end{array}\right.
$$

for some functions f and g that depend on r and θ.
Solution: Substitute the expressions for \dot{x} and \dot{y} given by the right-hand sides of the equations in (22) into the right-hand side of the first equation in (21) to get

$$
\dot{r}=\frac{1}{r}(x(-\beta y)+y(\beta x)=0
$$

or

$$
\begin{equation*}
\dot{r}=0 . \tag{24}
\end{equation*}
$$

Similarly, substituting the expressions for \dot{x} and \dot{y} given by the righthand sides of the equations in (22) into the right-hand side of the second equation in (21) yields

$$
\dot{\theta}=\frac{1}{r^{2}}(x(\beta x)-y(-\beta y))=\frac{\beta}{r^{2}}\left(x^{2}+y^{2}\right) ;
$$

so that, in view of (16),

$$
\begin{equation*}
\dot{\theta}=\beta . \tag{25}
\end{equation*}
$$

Putting together the equations in (24) and (25) yields the system

$$
\left\{\begin{array}{l}
\dot{r}=0 \tag{26}\\
\dot{\theta}=\beta
\end{array}\right.
$$

Note that the system in (26) is in the form of the system in (23) with $f(r, \theta)=0$ and $g(r, \theta)=\beta$.
(b) Solve the system in (23).

Solution: The system in (26) can be integrated to yield

$$
\left\{\begin{align*}
r(t) & =a ; \tag{27}\\
\theta(t) & =\beta t+\phi,
\end{align*} \quad \text { for } t \in \mathbb{R}\right.
$$

where a and ϕ are constants of integration.
(c) Use the solutions obtained in part (b) and the equations in (14) to obtain solutions of the system in (22).
Solution: The expressions for r and θ in (27) can now be used, in conjunction with the equations in (14), to yield the solutions of the the system in (22):

$$
\left\{\begin{array}{l}
x(t)=a \cos (\beta t+\phi) ; \\
y(t)=a \sin (\beta t+\phi),
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

