Review Problems for Exam 1

1. Sketch the curve C parametrized by

$$
\left\{\begin{array}{l}
x=\sin ^{2}(t) ; \\
y=\cos ^{2}(t),
\end{array} \quad \text { for }-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}\right.
$$

2. A curve C is parametrized by the differentiable path given by

$$
\sigma(t)=\left(3 t^{2}, 2+5 t\right), \quad \text { for } t \in \mathbb{R}
$$

Sketch the curve C in the $x y$-plane. Describe the curve.
3. Sketch the curve C parametrized by

$$
\left\{\begin{array}{l}
x=2+3 \cos t ; \\
y=1+\sin t,
\end{array} \quad \text { for } 0 \leqslant t \leqslant 2 \pi\right.
$$

Describe the curve.
4. Give a parametrization for the portion of the circle of radius 2 centered at $(1,1)$ from the point $P(1,3)$ to the point $Q(3,1)$.
5. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ denote distinct points in the plane. Give a parametrization of the directed line segment $\overrightarrow{P Q}$.
6. Given a curve C parametrized by a differentiable path $\sigma: J \rightarrow \mathbb{R}^{2}$, where J is an open interval, the tangent line to the curve at the point $\sigma\left(t_{o}\right)$, where $a<t_{o}<b$, is the straight line through $\sigma\left(t_{o}\right)$ in the direction of $\sigma^{\prime}\left(t_{o}\right)$. The vector-parametric equation of this line is given by

$$
\ell(t)=\sigma\left(t_{o}\right)+\left(t-t_{o}\right) \sigma^{\prime}\left(t_{o}\right), \quad \text { for } t \in \mathbb{R}
$$

For the given parametrizations, give the vector-parametric equation of the tangent line to the path at the indicated point.
(a) $\sigma(t)=\widehat{t i}+t^{2} \widehat{j}$, for $t \in \mathbb{R}$, at the point $(1,1)$.
(b) $\sigma(t)=\binom{2 t-t^{2}}{t^{2}}$, for $t \in \mathbb{R}$, at the point $(0,4)$.
7. Let C denote the unit circle in the $x y$-plane centered at the origin. Give the coordinates of the points on C at which the tangent line is parallel to the line $y=x$.
8. Given a differentiable path, $\sigma: J \rightarrow \mathbb{R}^{2}$, where J is an open interval, the linear approximation of $\sigma(t)$, for t near $t_{o} \in J$, is the vector-valued function

$$
\ell(t)=\sigma\left(t_{o}\right)+\left(t-t_{o}\right) \sigma^{\prime}\left(t_{o}\right), \quad \text { for } t \in \mathbb{R} .
$$

Give the linear approximations to the paths at the indicated points
(a) $\sigma(t)=\left(t^{3}, 2+t^{2}\right)$, for $t \in \mathbb{R}$, at the point $(1,3)$.
(b) $\sigma(t)=\left(t, t-t^{3}\right)$, for $t \in \mathbb{R}$, at the point $(1,0)$.
9. The line L_{1} is given by the parametric equations

$$
\left\{\begin{array}{l}
x=1+2 t ; \\
y=3-t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

and the line L_{2} is given by the parametric equations

$$
\left\{\begin{array}{l}
x=3 s ; \\
y=1+s,
\end{array} \quad \text { for } s \in \mathbb{R}\right.
$$

where t and s are parameters.
(a) Determine whether or not the lines L_{1} and L_{2} meet. Explain the reasoning leading to your answer.
(b) If the lines L_{1} and L_{2} do meet, determine the point where they intersect, and give the cosine of the angle the two lines make at the point of intersection.
10. A curve C in the plane is given by the parametric equations

$$
\left\{\begin{array}{l}
x=e^{t} ; \\
y=e^{-2 t},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

(a) Sketch the curve C in the $x y$-plane and indicated the direction along the curve given by the parametrization.
(b) Verify that the point $(1,1)$ is on the curve C. Explain your reasoning.
(c) Give the vector-parametric equation of the tangent line to the curve at the point $(1,1)$.
(d) Give the vector-parametric equation of the line perpendicular to the tangent line to the curve at the point $(1,1)$.

