Solutions to Review Problems for Exam 1

1. Sketch the curve C parametrized by

$$
\left\{\begin{array}{l}
x=\sin ^{2}(t) ; \tag{1}\\
y=\cos ^{2}(t),
\end{array} \quad \text { for } 0 \leqslant t \leqslant \frac{\pi}{2}\right.
$$

Solution: Since $\cos ^{2} t+\sin ^{t}=1$, for all $t \in \mathbb{R}$, we obtain from the parametric equations in (1) that

$$
\begin{equation*}
x+y=1 \tag{2}
\end{equation*}
$$

Thus, the curve C lies on the straight line given by the equation in (2). To find out which portion of the line in (2) the parametric equations in (1) represent, note that, as t goes from 0 to $\frac{\pi}{2}$, the x-coordinates of points in C range from 0 to 1. Similarly, the y-coordinates of points on C range from 1 to 0 . Consequently,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y=1 \text { and } 0 \leqslant x \leqslant 1\right\}
$$

C is sketched in Figure 1.

Figure 1: Sketch of C
2. A curve C is parametrized by the differentiable path given by

$$
\sigma(t)=\left(3 t^{2}, 2+5 t\right), \quad \text { for } t \in \mathbb{R}
$$

Sketch the curve C in the $x y$-plane. Describe the curve.

Solution: The parametric equations of C are

$$
\left\{\begin{array}{l}
x=3 t^{2} \tag{3}\\
y=2+5 t
\end{array}\right.
$$

Solving for t in the second equation in (3) yields

$$
t=\frac{y-2}{5}
$$

and substituting into the first equation

$$
x=3\left(\frac{y-2}{5}\right)^{2}
$$

or

$$
\begin{equation*}
x=\frac{3}{25}(y-2)^{2} . \tag{4}
\end{equation*}
$$

The graph of the equation in (4) is a parabola with vertex at $(0,2)$, which opens up to the the right; see the sketch in Figure 2.

Figure 2: Sketch of parabola C
3. Sketch the curve C parametrized by

$$
\left\{\begin{array}{l}
x=2+3 \cos t ; \tag{5}\\
y=1+\sin t
\end{array} \quad \text { for } 0 \leqslant t \leqslant 2 \pi\right.
$$

Describe the curve.
Solution: From the parametric equations in (5) we obtain

$$
\frac{x-2}{3}=\cos t \quad \text { and } \quad y-1=\sin t
$$

from which we get that

$$
\left(\frac{x-2}{3}\right)^{2}+(y-1)^{2}=1
$$

or

$$
\begin{equation*}
\frac{(x-2)^{2}}{9}+(y-1)^{2}=1 \tag{6}
\end{equation*}
$$

The graph of the equation in (6) is an ellipse centered at the point $(2,1)$ with major parallel to the x-axis and of length 6 , and its minor axis parallel to the y-axis and of length 2. This ellipse is shown in Figure 3.

Figure 3: Sketch of Ellipse
4. Give a parametrization for the portion of the circle of radius 2 centered at $(1,1)$ from the point $P(1,3)$ to the point $Q(3,1)$.
Solution: The equation of the circle of radius 2 and center at $(1,1)$ in Cartesian coordinates is

$$
\begin{equation*}
(x-1)^{2}+(y-1)^{2}=4 \tag{7}
\end{equation*}
$$

from which we get that

$$
\frac{(x-1)^{2}}{4}+\frac{(y-1)^{2}}{4}=1
$$

or

$$
\begin{equation*}
\left(\frac{x-1}{2}\right)^{2}+\left(\frac{y-1}{2}\right)^{2}=1 \tag{8}
\end{equation*}
$$

Setting

Figure 4: Sketch of C

$$
\frac{x-1}{2}=\sin t \quad \text { and } \quad \frac{y-1}{2}=\cos t
$$

we see that the equation in (8) is satisfied. We therefore get the parametric equations

$$
\left\{\begin{array}{l}
x=1+2 \sin t \tag{9}\\
y=1+2 \cos t
\end{array}\right.
$$

To get the portion of the circle in (7) that goes from the point P go the point Q pictured in Figure 4, we restrict t in (9) to go from 0 to $\frac{\pi}{2}$.
5. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ denote distinct points in the plane. Give a parametrization of the directed line segment $\overrightarrow{P Q}$.
Solution: Figure 5 shows the situation in which x_{1}, x_{2}, y_{1} and y_{2} are positive, and $x_{1}<x_{2}$ and $y_{1}<y_{2}$.
Define the vector

$$
v=\binom{x_{2}-x_{1}}{y_{2}-y_{1}}
$$

Figure 5: Sketch of directed line segment from P to Q
Then, the vector-parametric equation of the directed line segment $\overrightarrow{P Q}$ is given by

$$
\begin{equation*}
\sigma(t)=\overrightarrow{O P}+t v, \quad \text { for } 0 \leqslant t \leqslant 1 \tag{10}
\end{equation*}
$$

The vector-parametric equation in (10) can be written as

$$
\binom{x(t)}{y(t)}=\binom{x_{1}}{y_{1}}+t\binom{x_{2}-x_{1}}{y_{2}-y_{1}}, \quad \text { for } 0 \leqslant t \leqslant 1
$$

or

$$
\binom{x(t)}{y(t)}=\binom{x_{1}}{y_{1}}+\binom{\left(x_{2}-x_{1}\right) t}{\left(y_{2}-y_{1}\right) t}, \quad \text { for } 0 \leqslant t \leqslant 1
$$

or

$$
\begin{equation*}
\binom{x(t)}{y(t)}=\binom{x_{1}+\left(x_{2}-x_{1}\right) t}{y_{1}+\left(y_{2}-y_{1}\right) t}, \quad \text { for } 0 \leqslant t \leqslant 1 \tag{11}
\end{equation*}
$$

The vector equation in (11) is equivalent to the parametric equations

$$
\left\{\begin{array}{l}
x=x_{1}+\left(x_{2}-x_{1}\right) t ; \\
y=y_{1}+\left(y_{2}-y_{1}\right) t
\end{array} \quad \text { for } 0 \leqslant t \leqslant 1\right.
$$

6. Given a curve C parametrized by a differentiable path $\sigma: J \rightarrow \mathbb{R}^{2}$, where J is an open interval, the tangent line to the curve at the point $\sigma\left(t_{o}\right)$, where $a<t_{o}<b$, is the straight line through $\sigma\left(t_{o}\right)$ in the direction of $\sigma^{\prime}\left(t_{o}\right)$. The vector-parametric equation of this line is given by

$$
\ell(t)=\sigma\left(t_{o}\right)+\left(t-t_{o}\right) \sigma^{\prime}\left(t_{o}\right), \quad \text { for } t \in \mathbb{R} .
$$

For the given parametrizations, give the vector-parametric equation of the tangent line to the path at the indicated point.
(a) $\sigma(t)=\widehat{t i}+t^{2} \widehat{j}$, for $t \in \mathbb{R}$, at the point $(1,1)$.

Solution: The point $(1,1)$ corresponds to $t_{o}=1$. Thus, the vectorparametric equation of the tangent line to the curve parametrized by σ at the point $(1,1)$ is

$$
\ell(t)=\sigma(1)+(t-1) \sigma^{\prime}(1), \quad \text { for } t \in \mathbb{R},
$$

where

$$
\sigma^{\prime}(t)=\hat{i}+2 t \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

so that,

$$
\sigma^{\prime}(1)=\hat{i}+2 \hat{j}
$$

Thus, the vector-parametric equation of the tangent line to the path σ at $\sigma(1)=\hat{i}+\hat{j}$ is

$$
\ell(t)=\hat{i}+\hat{j}+(t-1)(\hat{i}+2 \hat{j}), \quad \text { for } t \in \mathbb{R}
$$

or

$$
\ell(t)=t \hat{i}+(1+2(t-1)) \hat{j} \quad \text { for } t \in \mathbb{R}
$$

or

$$
\ell(t)=t \hat{i}+(2 t-1) \hat{j} \quad \text { for } t \in \mathbb{R}
$$

(b) $\sigma(t)=\binom{2 t-t^{2}}{t^{2}}$, for $t \in \mathbb{R}$, at the point $(0,4)$.

Solution: The point $(0,4)$ corresponds to $t_{o}=2$. Thus, the vectorparametric equation of the tangent line to the path σ at the point $(0,4)$ is

$$
\ell(t)=\sigma(2)+(t-2) \sigma^{\prime}(2), \quad \text { for } t \in \mathbb{R}
$$

where

$$
\sigma^{\prime}(t)=\binom{2-2 t}{2 t}, \quad \text { for } t \in \mathbb{R}
$$

so that

$$
\sigma^{\prime}(2)=\binom{-2}{4} \text {. }
$$

Thus, the vector-parametric equation of the tangent line to σ at the point $\sigma(2)$ is

$$
\begin{aligned}
& \ell(t)=\binom{0}{4}+(t-2)\binom{-2}{4}, \quad \text { for } t \in \mathbb{R}, \\
& \ell(t)=\binom{0}{4}+\binom{-2(t-2)}{4(t-2)}, \quad \text { for } t \in \mathbb{R},
\end{aligned}
$$

or
which simplifies to

$$
\ell(t)=\binom{4-2 t}{4 t-4}, \quad \text { for } t \in \mathbb{R}
$$

7. Let C denote the unit circle in the $x y$-plane centered at the origin. Give the coordinates of the points on C at which the tangent line is parallel to the line $y=x$.
Solution: Parametrize C with the path $\sigma:[0,2 \pi) \rightarrow \mathbb{R}^{2}$ given by

$$
\sigma(t)=\cos t \hat{i}+\sin t \hat{j}, \quad \text { for } 0 \leqslant t<2 \pi
$$

A tangent vector to this path at $\sigma(t)$ is given by

$$
\begin{equation*}
\sigma^{\prime}(t)=-\sin t \hat{i}+\cos t \hat{j}, \quad \text { for } 0<t<2 \pi \tag{12}
\end{equation*}
$$

We want to find t so that the vector in (12) is parallel to the line $y=x$, which is parametrized by the parametric equations

$$
\left\{\begin{array}{l}
x=t ; \\
y=t
\end{array} \quad, \quad \text { for } t \in \mathbb{R}\right.
$$

Thus, a direction vector of the line $y=x$ is

$$
\begin{equation*}
v=\hat{i}+\hat{j} . \tag{13}
\end{equation*}
$$

For the vector $\sigma^{\prime}(t)$ in (12) to be parallel to v in (13) there must be a nonzero scalar λ such that

$$
\sigma^{\prime}(t)=\lambda v
$$

or

$$
-\sin t \hat{i}+\cos t \hat{j}=\lambda(\hat{i}+\hat{j})
$$

or

$$
-\sin t \hat{i}+\cos t \hat{j}=\lambda \hat{i}+\lambda \hat{j}
$$

from which we get

$$
\begin{equation*}
-\sin t=\lambda \quad \text { and } \quad \cos t=\lambda \tag{14}
\end{equation*}
$$

It follows from the equations in (14) and the fact that $\cos ^{2} t+\sin ^{2} t=1$ that

$$
\lambda^{2}+\lambda^{2}=1
$$

or

$$
2 \lambda^{2}=1,
$$

or

$$
\lambda^{2}=\frac{1}{2} .
$$

We therefore get two possibilities for λ :

$$
\lambda_{1}=\frac{\sqrt{2}}{2} \quad \text { and } \quad \lambda_{1}=-\frac{\sqrt{2}}{2} .
$$

For $\lambda_{1}=\frac{\sqrt{2}}{2}$, we get from (14) that

$$
\cos t=\frac{\sqrt{2}}{2} \quad \text { and } \quad \sin t=-\frac{\sqrt{2}}{2}
$$

This corresponds to a value of t given by

$$
\begin{equation*}
t_{1}=\frac{7 \pi}{4} \tag{15}
\end{equation*}
$$

On the other hand, if $\lambda_{1}=-\frac{\sqrt{2}}{2}$, the equations in (14) yield

$$
\cos t=-\frac{\sqrt{2}}{2} \quad \text { and } \quad \sin t=\frac{\sqrt{2}}{2}
$$

This corresponds to a value of t given by

$$
\begin{equation*}
t_{2}=\frac{3 \pi}{4} . \tag{16}
\end{equation*}
$$

Thus, the points on the circle C at which the tangent lines are parallel to the line $y=x$ are $\sigma\left(t_{1}\right)$, where t_{1} is given in (15), and $\sigma\left(t_{2}\right)$, where t_{2} is given in (16). This yields points on C with coordinates

$$
\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)
$$

and

$$
\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

respectively.
8. Given a differentiable path, $\sigma: J \rightarrow \mathbb{R}^{2}$, where J is an open interval, the linear approximation of $\sigma(t)$, for t near $t_{o} \in J$, is the vector-valued function

$$
\ell(t)=\sigma\left(t_{o}\right)+\left(t-t_{o}\right) \sigma^{\prime}\left(t_{o}\right), \quad \text { for } t \in \mathbb{R} .
$$

Give the linear approximations to the paths at the indicated points
(a) $\sigma(t)=\left(t^{3}, 2+t^{2}\right)$, for $t \in \mathbb{R}$, at the point $(1,3)$.

Solution: The point $(1,3)$ corresponds to $t_{o}=1$.
The linear approximation to σ for t near 1 is

$$
\ell(t)=\sigma(1)+(t-1) \sigma^{\prime}(1), \quad \text { for } t \in \mathbb{R},
$$

where

$$
\sigma^{\prime}(t)=3 t^{2} \hat{i}+2 t \hat{j}, \quad \text { for } t \in \mathbb{R} .
$$

Thus, in particular,

$$
\sigma^{\prime}(t)=3 \hat{i}+2 \hat{j} .
$$

We then have that the linear approximation to $\sigma(t)$, for t near 1 is

$$
\begin{aligned}
\ell(t) & =\hat{i}+3 \hat{j}+(t-1)(3 \hat{i}+2 \hat{j}) \\
& =[1+3(t-1)] \hat{i}+[3+2(t-1)] \hat{j}
\end{aligned}
$$

for t near 1 , which simplifies to

$$
\ell(t)=(3 t-2) \hat{i}+(2 t+1) \hat{j}, \quad \text { for } t \text { near } 1 .
$$

(b) $\sigma(t)=\left(t, t-t^{3}\right)$, for $t \in \mathbb{R}$, at the point $(1,0)$.

Solution: The point $(1,0)$ corresponds to $t_{o}=1$.
The linear approximation to σ for t near 1 is

$$
\ell(t)=\sigma(1)+(t-1) \sigma^{\prime}(1), \quad \text { for } t \in \mathbb{R}
$$

where

$$
\sigma^{\prime}(t)=\hat{i}+\left(1-3 t^{2}\right) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

Thus, in particular,

$$
\sigma^{\prime}(t)=\hat{i}-2 \hat{j}
$$

We then have that the linear approximation to $\sigma(t)$, for t near 1 is

$$
\begin{aligned}
\ell(t) & =\hat{i}+(t-1)(\hat{i}-2 \hat{j}) \\
& =t \hat{i}-2(t-1) \hat{j}
\end{aligned}
$$

for t near 1 , or

$$
\ell(t)=t \hat{i}+(2-2 t) \hat{j}, \quad \text { for } t \text { near } 1
$$

9. The line L_{1} is given by the parametric equations

$$
\left\{\begin{array}{l}
x=1+2 t ; \tag{17}\\
y=3-t,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

and the line L_{2} is given by the parametric equations

$$
\left\{\begin{array}{l}
x=3 s ; \tag{18}\\
y=1+s,
\end{array} \quad \text { for } s \in \mathbb{R}\right.
$$

where t and s are parameters.
(a) Determine whether or not the lines L_{1} and L_{2} meet. Explain the reasoning leading to your answer.
Solution: Line L_{1} has a vector-parametric equation

$$
\ell_{1}(t)=\binom{1}{3}+t v_{1}, \quad \text { for } t \in \mathbb{R}
$$

where

$$
\begin{equation*}
v_{1}=\binom{2}{-1} \tag{19}
\end{equation*}
$$

is a direction vector of L_{1}.
Similarly, the vector-parametric equation of L_{2} is

$$
\ell_{2}(s)=\binom{0}{1}+s v_{2}, \quad \text { for } s \in \mathbb{R}
$$

where

$$
\begin{equation*}
v_{2}=\binom{3}{1} \tag{20}
\end{equation*}
$$

is a direction vector of L_{2}.
Since v_{1} is not a scalar multiple of v_{2}, the lines L_{1} ans L_{2} are not parallel. Hence, they must intersect somewhere.
(b) If the lines L_{1} and L_{2} do meet, determine the point where they intersect, and give the cosine of the angle the two lines make at the point of intersection.
Solution: To find the point of intersection of L_{1} and L_{2}, set corresponding components in the parametric equations in (17) and (18) equal to each other to get the system equations

$$
\left\{\begin{array}{l}
1+2 t=3 s \\
3-t=1+s
\end{array}\right.
$$

or

$$
\begin{cases}2 t-3 s & =-1 \tag{21}\\ t+s & =2\end{cases}
$$

The system in (21) can be solved simultaneously to yield $t=1$ and $s=1$. Hence, the lines L_{1} and L_{2} meet at the point $\left.\ell_{(} 1\right)=\ell_{2}(1)=(3,2)$.
The cosine of the angles between the lines at the point they intersect is given by

$$
\cos \theta=\frac{v_{1} \cdot v_{2}}{\left\|v_{1}\right\|\left\|v_{2}\right\|}
$$

where v_{1} and v_{2} are the direction vectors of L_{1} and L_{2}, respectively, given in (19) and (20), respectively.
Thus,

$$
\begin{aligned}
v_{1} \cdot v_{2} & =(2)(3)+(-1)(1)=5 \\
\left\|v_{1}\right\| & =\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}
\end{aligned}
$$

and

$$
\left\|v_{2}\right\|=\sqrt{3^{2}+1^{2}}=\sqrt{10}
$$

Consequently,

$$
\cos \theta=\frac{5}{\sqrt{5} \sqrt{10}}
$$

or

$$
\cos \theta=\frac{1}{\sqrt{2}}
$$

or

$$
\cos \theta=\frac{\sqrt{2}}{2}
$$

10. A curve C in the plane is given by the parametric equations

$$
\left\{\begin{array}{l}
x=e^{t} ; \tag{22}\\
y=e^{-2 t},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

(a) Sketch the curve C in the $x y$-plane and indicated the direction along the curve given by the parametrization.
Solution: We first note that, since the exponential function is always positive, we get from the parametric equations in (22) that $x>0$ and $y>0$. Consequently, the curve C lies entirely in the first quadrant.
Squaring on both sides of the first equation in (22) we see that

$$
x^{2}=e^{2 t}, \quad \text { for } t \in \mathbb{R}
$$

Comparing this equation with the second equation in (22) we also see that

$$
x^{2} y=1,
$$

from which we get that

$$
\begin{equation*}
y=\frac{1}{x^{2}}, \quad \text { with } x>0 \tag{23}
\end{equation*}
$$

A sketch of the graph of the equation in (23 is shown in Figure 6.
(b) Verify that the point $(1,1)$ is on the curve C. Explain your reasoning.

Solution: Note that the point $(1,1)$ corresponds to $t=0$ is the parametric equations in (22). Thus, the point $(1,1)$ is on the curve C.

Figure 6: Sketch of C
(c) Give the vector-parametric equation of the tangent line to the curve at the point $(1,1)$.
Solution: The parametric equations in (22) define a parametrization $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ for C given by

$$
\begin{equation*}
\sigma(t)=e^{t} \hat{i}+e^{-2 t} \hat{j}, \quad \text { for } t \in \mathbb{R} \tag{24}
\end{equation*}
$$

Since the point $(1,1)$ corresponds to $t_{o}=0$, the vector-parametric equation of the tangent line to the path σ defined in (24) is

$$
\ell(t)=\sigma(0)+t \sigma^{\prime}(0), \quad \text { for } t \in \mathbb{R}
$$

where, according to (24),

$$
\begin{equation*}
\sigma^{\prime}(0)=\hat{i}-2 \hat{j} . \tag{25}
\end{equation*}
$$

Then, he vector-parametric equation of the tangent line to the curve C at the point $(1,1)$ is

$$
\ell(t)=\hat{i}+\hat{j}+t(\hat{i}-2 \hat{j}), \quad \text { for } t \in \mathbb{R}
$$

or

$$
\ell(t)=(1+t) \hat{i}+(1-2 t) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

(d) Give the vector-parametric equation of the line perpendicular to the tangent line to the curve at the point $(1,1)$.

Solution: A vector-parametric equation of a line perpendicular to the tangent line to the curve C at the point $(1,1)$ is

$$
p(t)=\hat{i}+\hat{j}+t v, \quad \text { for } t \in \mathbb{R}
$$

where v is a vector that is perpendicular to $\sigma^{\prime}(0)$ given in (25). Thus, we may take

$$
v=2 \hat{i}+\hat{j}
$$

Consequently,

$$
p(t)=\hat{i}+\hat{j}+t(2 \hat{i}+\hat{j}), \quad \text { for } t \in \mathbb{R}
$$

or

$$
p(t)=(1+2 t) \hat{i}+(1+t) \hat{j}, \quad \text { for } t \in \mathbb{R}
$$

