Review Problems for Exam 2

1. Compute and sketch the flow of the vector field

$$F(x,y) = -2x\hat{i} + y\hat{j}, \quad \text{for } (x,y) \in \mathbb{R}^2.$$

2. Compute and sketch the flow of the vector field

$$F(x,y) = -2x\hat{i} - 2y\hat{j}, \quad \text{for } (x,y) \in \mathbb{R}^2.$$

3. A particle of unit mass is moving along a path in the *xy*-plane parametrized by $\sigma(t) = R \sin(\omega t)\hat{i} + R \cos(\omega t)\hat{j}$, for $t \in \mathbb{R}$, where R is measured in meters, t is measured in seconds, and ω in radians per second.

The particle flies of its path on a tangent line at time t_o such that $\omega t_o = \frac{\pi}{3}$ radians.

- (a) Give the position and velocity of the particle at time t_o .
- (b) Give the equation of the path of the particle after it flies off its circular path.
- (c) Find the time $t > t_o$, if any, at which the particle meets the x-axis. Give the location of the particle at that time.
- 4. A particle moving in a straight line (along the x-axis) is moving according to the law of motion

$$\ddot{x} = 8x - 2\dot{x}.\tag{1}$$

Define

$$x(t) = e^{\lambda t}, \quad \text{for } t \in \mathbb{R}.$$
 (2)

- (a) Determine distinct values of λ for which the function x defined in (2) solves the differential equation in (1).
- (b) Let λ_1 and λ_2 denote the two distinct values of λ obtained in part (a). Verify that the function $u: \mathbb{R} \to \mathbb{R}^2$ given by

$$u(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}, \quad \text{for } t \in \mathbb{R},$$

where c_1 and c_2 are constant, solves the differential equation in (1).

Math 32S. Rumbos

5. We showed in class that the square of the area of the parallelogram, $\mathcal{P}(u, v)$, determined by vectors u and v in \mathbb{R}^2 satisfies the equation

$$(\operatorname{area}(\mathcal{P}(u,v)))^{2} = ||u||^{2} ||v||^{2} - (v \cdot u)^{2}.$$
(3)

(a) Use the expression in (3) and properties of the dot product to derive the expression

$$\operatorname{area}(\mathcal{P}(u,v))) = \|u\| \|v\| |\sin \theta|, \tag{4}$$

where θ is the angle between u and v.

- (b) Give a geometric explanation of the expression in (4).
- (c) When is the area of the parallelogram determined by u and v the largest possible?
- 6. Let A and Q denote the 2 × 2 matrices $A = \begin{pmatrix} 0 & 1 \\ 8 & -2 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & 1 \\ -4 & 2 \end{pmatrix}$
 - (a) Show that Q is invertible, and compute its inverse, Q^{-1} .
 - (b) Compute $Q^{-1}AQ$. Explain why $Q^{-1}AQ$ is called a diagonal matrix.
- 7. The matrix $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, where λ_1 and λ_2 are real numbers, is called a **diagonal** matrix.
 - (a) Compute D^2 , D^3 and D^n , for any positive integer n.
 - (b) Assume that $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$. Show that D is invertible and compute D^{-1} .
- 8. Consider the linear system

$$\begin{cases} \dot{x} = -3x + 2y; \\ \dot{y} = 4x - 5y. \end{cases}$$

$$\tag{5}$$

Let

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,

and define the vector value function

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_1 e^{-7t} \mathbf{v}_1 + c_2 e^{-t} \mathbf{v}_2, \quad \text{for } t \in \mathbb{R},$$
(6)

where c_1 and c_2 are constants.

Math 32S. Rumbos

- (a) Verify that the vector-valued function given in (6) solves the system in (5).
- (b) Use (6) to sketch trajectories of the system in (5) for the cases
 - (i) $c_1 = 0$ and $c_2 = 0$;
 - (ii) $c_1 \neq 0$ and $c_2 = 0$;
 - (iii) $c_1 = 0$ and $c_2 \neq 0$.
- 9. Consider the Lotka–Volterra system

$$\begin{cases} \dot{x} = x - xy; \\ \dot{y} = xy - y. \end{cases}$$
(7)

Use the Chain Rule to derive

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}},$$

and use this expressions to obtain an equation satisfied by the trajectories of the system in (7) for x > 0 and y > 0.

10. Let a, b, c and d denote real numbers, and consider the system of linear equations

$$\begin{cases} ax + by = 0; \\ cx + dy = 0. \end{cases}$$
(8)

- (a) Explain why x = y = 0 solves the system in (8). This solution is usually referred to as the trivial solution of the system in (8).
- (b) Show that, if $ad bc \neq 0$, then the system in (8) has only the trivial solution.
- (c) Assume that ad bc = 0 and $a \neq 0$. Compute all the solutions of the system in (8) in this case.