## Review Problems for Exam 2

1. Compute and sketch the flow of the vector field

$$
F(x, y)=-2 x \hat{i}+y \hat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

2. Compute and sketch the flow of the vector field

$$
F(x, y)=-2 x \hat{i}-2 y \hat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

3. A particle of unit mass is moving along a path in the $x y$-plane parametrized by $\sigma(t)=R \sin (\omega t) \hat{i}+R \cos (\omega t) \hat{j}$, for $t \in \mathbb{R}$, where $R$ is measured in meters, $t$ is measured in seconds, and $\omega$ in radians per second.
The particle flies of its path on a tangent line at time $t_{o}$ such that $\omega t_{o}=\frac{\pi}{3}$ radians.
(a) Give the position and velocity of the particle at time $t_{o}$.
(b) Give the equation of the path of the particle after it flies off its circular path.
(c) Find the time $t>t_{o}$, if any, at which the particle meets the $x$-axis. Give the location of the particle at that time.
4. A particle moving in a straight line (along the $x$-axis) is moving according to the law of motion

$$
\begin{equation*}
\ddot{x}=8 x-2 \dot{x} . \tag{1}
\end{equation*}
$$

Define

$$
\begin{equation*}
x(t)=e^{\lambda t}, \quad \text { for } t \in \mathbb{R} . \tag{2}
\end{equation*}
$$

(a) Determine distinct values of $\lambda$ for which the function $x$ defined in (2) solves the differential equation in (1).
(b) Let $\lambda_{1}$ and $\lambda_{2}$ denote the two distinct values of $\lambda$ obtained in part (a). Verify that the function $u: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
u(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}, \quad \text { for } t \in \mathbb{R}
$$

where $c_{1}$ and $c_{2}$ are constant, solves the differential equation in (1).
5. We showed in class that the square of the area of the parallelogram, $\mathcal{P}(u, v)$, determined by vectors $u$ and $v$ in $\mathbb{R}^{2}$ satisfies the equation

$$
\begin{equation*}
(\operatorname{area}(\mathcal{P}(u, v)))^{2}=\|u\|^{2}\|v\|^{2}-(v \cdot u)^{2} . \tag{3}
\end{equation*}
$$

(a) Use the expression in (3) and properties of the dot product to derive the expression

$$
\begin{equation*}
\operatorname{area}(\mathcal{P}(u, v)))=\|u\|\|v\| \| \sin \theta \mid, \tag{4}
\end{equation*}
$$

where $\theta$ is the angle between $u$ and $v$.
(b) Give a geometric explanation of the expression in (4).
(c) When is the area of the parallelogram determined by $u$ and $v$ the largest possible?
6. Let $A$ and $Q$ denote the $2 \times 2$ matrices $A=\left(\begin{array}{rr}0 & 1 \\ 8 & -2\end{array}\right)$ and $Q=\left(\begin{array}{rr}1 & 1 \\ -4 & 2\end{array}\right)$
(a) Show that $Q$ is invertible, and compute its inverse, $Q^{-1}$.
(b) Compute $Q^{-1} A Q$. Explain why $Q^{-1} A Q$ is called a diagonal matrix.
7. The matrix $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, where $\lambda_{1}$ and $\lambda_{2}$ are real numbers, is called a diagonal matrix.
(a) Compute $D^{2}, D^{3}$ and $D^{n}$, for any positive integer $n$.
(b) Assume that $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$. Show that $D$ is invertible and compute $D^{-1}$.
8. Consider the linear system

$$
\left\{\begin{array}{l}
\dot{x}=-3 x+2 y  \tag{5}\\
\dot{y}=4 x-5 y
\end{array}\right.
$$

Let

$$
\mathrm{v}_{1}=\binom{1}{-2} \quad \text { and } \quad \mathrm{v}_{2}=\binom{1}{1}
$$

and define the vector value function

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1} e^{-7 t} \mathbf{v}_{1}+c_{2} e^{-t} \mathbf{v}_{2}, \quad \text { for } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

where $c_{1}$ and $c_{2}$ are constants.
(a) Verify that the vector-valued function given in (6) solves the system in (5).
(b) Use (6) to sketch trajectories of the system in (5) for the cases
(i) $c_{1}=0$ and $c_{2}=0$;
(ii) $c_{1} \neq 0$ and $c_{2}=0$;
(iii) $c_{1}=0$ and $c_{2} \neq 0$.
9. Consider the Lotka-Volterra system

$$
\left\{\begin{array}{l}
\dot{x}=x-x y  \tag{7}\\
\dot{y}=x y-y .
\end{array}\right.
$$

Use the Chain Rule to derive

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}
$$

and use this expressions to obtain an equation satisfied by the trajectories of the system in (7) for $x>0$ and $y>0$.
10. Let $a, b, c$ and $d$ denote real numbers, and consider the system of linear equations

$$
\left\{\begin{array}{l}
a x+b y=0  \tag{8}\\
c x+d y=0
\end{array}\right.
$$

(a) Explain why $x=y=0$ solves the system in (8). This solution is usually referred to as the trivial solution of the system in (8).
(b) Show that, if $a d-b c \neq 0$, then the system in (8) has only the trivial solution.
(c) Assume that $a d-b c=0$ and $a \neq 0$. Compute all the solutions of the system in (8) in this case.

