Solutions to Review Problems for Exam 2

1. Compute and sketch the flow of the vector field

$$
F(x, y)=-2 x \hat{i}+y \hat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

Solution: First, we compute solutions of the system of differential equations

$$
\left\{\begin{array}{l}
\dot{x}=-2 x \tag{1}\\
\dot{y}=y .
\end{array}\right.
$$

The solution curves of the system in (1) are given parametrically by

$$
\left\{\begin{array}{l}
x(t)=c_{1} 2^{-2 t} ; \tag{2}\\
y(t)=c_{2} e^{t},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

and for constants of integration c_{1} and c_{2}.
We sketch the various types of curves prametrized by the equations in (2) by considering all possibilities for c_{1} and c_{2}.
If $c_{1}=0$ and $c_{2}=0$ in (2), we obtain the equilibrium solution $(0,0)$; this is sketched as a dot in Figure 1.
If $c_{1} \neq 0$ and $c_{2}=0$ in (2), we obtain the parametric equations

$$
\left\{\begin{array}{l}
x(t)=c_{1} 2^{-2 t} ; \\
y(t)=0,
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

which are the parametric equations of half-lines along the x-axis: the positive x-axis for $c_{1}>0$, and the negative x-axis for $c_{1}<0$. These trajectories tend towards the origin $(0,0)$ because $e^{-2 t}$ decreases to 0 as t increases. These trajectories are sketched in Figure 1.
If $c_{1}=0$ and $c_{2} \neq 0$ in (2), we obtain the parametric equations

$$
\left\{\begin{array}{l}
x(t)=0 ; \\
y(t)=c_{2} e^{t},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

which are the parametric equations of half-lines along the y-axis: the positive y-axis for $c_{2}>0$, and the negative y-axis for $c_{2}<0$. These trajectories tend away from origin $(0,0)$ because e^{t} increases as t increases. These trajectories are sketched in Figure 1.

Figure 1: Sketch of Phase Portrait of System (1)

Finally, assume that $c_{1} \neq 0$ and $c_{2} \neq 0$. From the equations in (2) we obtain

$$
\left\{\begin{align*}
x & =c_{1} 2^{-2 t} ; \tag{3}\\
y^{2} & =c_{2}^{2} e^{2 t},
\end{align*} \quad \text { for } t \in \mathbb{R}\right.
$$

Multiplying the equations in (3) to each other then yields the equation

$$
x y^{2}=c_{1} c_{2}^{2}
$$

or

$$
\begin{equation*}
x y^{2}=c, \tag{4}
\end{equation*}
$$

where we have set $c=c_{1} c_{2}^{2}$; so that, $c \neq 0$.
The trajectories given by the equation in (4) lie on each of the four quadrants off the coordinate axis. For instance, for the case $c>0$, we can solve (4) for y to obtain

$$
y= \pm \frac{\sqrt{c}}{\sqrt{x}}, \quad \text { for } x>0
$$

These yield trajectories in the first and fourth quadrant in Figure 1. The trajectories in the second and third quadrant correspond to the case $c<0$.

The directions along the trajectories given by (4) for $c \neq 0$ are dictated by the signs of \dot{x} and \dot{y} in each of the quadrants. These directions are shown by arrows of the curves shown in Figure 1.
2. Compute and sketch the flow of the vector field

$$
F(x, y)=-2 x \hat{i}-2 y \hat{j}, \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

Solution: First, we compute solutions of the system of differential equations

$$
\left\{\begin{array}{l}
\dot{x}=-2 x ; \tag{5}\\
\dot{y}=-2 y .
\end{array}\right.
$$

The solution curves of the system in (5) are given parametrically by

$$
\left\{\begin{array}{l}
x(t)=c_{1} 2^{-2 t} ; \tag{6}\\
y(t)=c_{2} e^{-2 t},
\end{array} \quad \text { for } t \in \mathbb{R}\right.
$$

and for constants of integration c_{1} and c_{2}.

Figure 2: Sketch of Phase Portrait of System (5)

The case $c_{1}=c_{2}=0$ in (6) corresponds to the equilibrium point $(0,0)$, which is sketched as dot in Figure 2.
The case $c_{1} \neq 0$ and $c_{2}=0$ in (6) corresponds to two trajectories along the x-axis: one on the positive x-axis for $c_{1} .0$, and the other on the negative x-axis for $c_{1}<0$. Since $e^{-2 t}$ decreases to 0 as t increases, these two trajectories point toward the origin. These are shown in Figure 2.
The case $c_{1}=0$ and $c_{2} \neq 0$ in (6) corresponds to two trajectories along the y-axis: one on the positive y-axis $\left(c_{2}>0\right)$ tending towards the origin since $e^{-2 t}$ decreases to 0 as t increases, and the other on the negative y-axis $\left(c_{2}<0\right)$ also tending towards the origin. These two trajectories are sketched in Figure 2.
Finally, in the case $c_{1} \neq 0$ and $c_{2} \neq 0$ in (6), divide the first equation in (6) into the second equation to get

$$
\frac{y}{x}=\frac{c_{2}}{c_{1}},
$$

or

$$
\frac{y}{x}=c
$$

where we have set $c=\frac{c_{2}}{c_{1}}$; so that,

$$
\begin{equation*}
y=c x \tag{7}
\end{equation*}
$$

where $c \neq 0$. Thus, the rest of the trajectories of the system in (5) lie along straight lines through the origin of non-zero slope. These trajectories all tend towards the origin since $e^{-2 t} \rightarrow 0$ as $t \rightarrow \infty$. A few of those trajectories are shown in Figure 2.
3. A particle of unit mass is moving along a path in the $x y$-plane parametrized by $\sigma(t)=R \sin (\omega t) \hat{i}+R \cos (\omega t) \hat{j}$, for $t \in \mathbb{R}$, where R is measured in meters, t is measured in seconds, and ω in radians per second.
The particle flies of its path on a tangent line at time t_{o} such that $\omega t_{o}=\frac{\pi}{3}$ radians.
(a) Give the position and velocity of the particle at time t_{o}.

Solution: At time t_{o} the particle flies of its original path along a straight line parametrized by

$$
\begin{equation*}
\ell(t)=\sigma\left(t_{o}\right)+\left(t-t_{o}\right) \sigma^{\prime}\left(t_{o}\right), \quad \text { for } t \geqslant t_{o} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(t)=R \sin (\omega t) \hat{i}+R \cos (\omega t) \hat{j}, \quad \text { for } t \in \mathbb{R} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{\prime}(t)=R \omega \cos (\omega t) \hat{i}-R \omega \sin (\omega t) \hat{j}, \quad \text { for } t \in \mathbb{R} \tag{10}
\end{equation*}
$$

The position of the particle at time t_{o} is obtained by substituting $\omega t_{o}=\frac{\pi}{3}$ in (9) to get

$$
\begin{equation*}
\sigma\left(t_{o}\right)=R \frac{\sqrt{3}}{2} \hat{i}+\frac{R}{2} \hat{j} . \tag{11}
\end{equation*}
$$

The velocity of the particle at time t_{o} is obtained by substituting $\omega t_{o}=\frac{\pi}{3}$ in (10) to get

$$
\begin{equation*}
\sigma^{\prime}\left(t_{o}\right)=\frac{R \omega}{2} \hat{i}-\frac{R \omega \sqrt{3}}{2} \hat{j} . \tag{12}
\end{equation*}
$$

(b) Give the equation of the path of the particle after it flies off its circular path.
Solution: Substitute the vectors in (11) and (12) into the expression for the tangent line to the path σ at t_{o} given in (8) to get

$$
\ell(t)=R \frac{\sqrt{3}}{2} \hat{i}+\frac{R}{2} \hat{j}+\left(t-t_{o}\right)\left(\frac{R \omega}{2} \hat{i}-\frac{R \omega \sqrt{3}}{2} \hat{j}\right), \quad \text { for } t \geqslant t_{o}
$$

or

$$
\begin{equation*}
\ell(t)=\left(R \frac{\sqrt{3}}{2}+\left(t-t_{o}\right) \frac{R \omega}{2}\right) \hat{i}+\left(\frac{R}{2}-\left(t-t_{o}\right) \frac{R \omega \sqrt{3}}{2}\right) \hat{j}, \tag{13}
\end{equation*}
$$

for $t \geqslant t_{o}$.
(c) Find the time $t>t_{o}$, if any, at which the particle meets the x-axis. Give the location of the particle at that time.
Solution: The tangent line in (13) will meet the x-axis when the second component in (13 is 0 , or

$$
\frac{R}{2}-\left(t-t_{o}\right) \frac{R \omega \sqrt{3}}{2}=0
$$

or

$$
\begin{equation*}
1-\left(t-t_{o}\right) \omega \sqrt{3}=0 . \tag{14}
\end{equation*}
$$

Solving (14) for t then yields

$$
t=t_{o}+\frac{\sqrt{3}}{3 \omega}
$$

4. A particle moving in a straight line (along the x-axis) is moving according to the law of motion

$$
\begin{equation*}
\ddot{x}=8 x-2 \dot{x} . \tag{15}
\end{equation*}
$$

Define

$$
\begin{equation*}
x(t)=e^{\lambda t}, \quad \text { for } t \in \mathbb{R} . \tag{16}
\end{equation*}
$$

(a) Determine distinct values of λ for which the function x defined in (16) solves the differential equation in (15).
Solution: Differentiate the function x in (16) with respect to t twice to get

$$
\begin{equation*}
\dot{x}(t)=\lambda e^{\lambda t}, \quad \text { for } t \in \mathbb{R}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{x}(t)=\lambda^{2} e^{\lambda t}, \quad \text { for } t \in \mathbb{R} \tag{18}
\end{equation*}
$$

where we have used the Chain Rule.
Substituting the expressions for x, \dot{x} and \ddot{x} in (16), (17) and (18), respectively, into the differential equation in (15) yields

$$
\lambda^{2} e^{\lambda t}=8 e^{\lambda t}-2 \lambda e^{\lambda t}, \quad \text { for } t \in \mathbb{R},
$$

from which we get

$$
\lambda^{2}=8-2 \lambda,
$$

since the exponential function is never 0 ; from which we get the secondorder equation

$$
\begin{equation*}
\lambda^{2}+2 \lambda-8=0 \tag{19}
\end{equation*}
$$

The left-hand side of (19) can be factored to yield

$$
(\lambda+4)(\lambda-2)=0,
$$

from which we get that

$$
\begin{equation*}
\lambda_{1}=-4 \quad \text { and } \quad \lambda_{2}=2 \tag{20}
\end{equation*}
$$

(b) Let λ_{1} and λ_{2} denote the two distinct values of λ obtained in part (a).

Verify that the function $u: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\begin{equation*}
u(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}, \quad \text { for } t \in \mathbb{R} \tag{21}
\end{equation*}
$$

where c_{1} and c_{2} are constants, solves the differential equation in (15).
Solution: With the values of λ_{1} and λ_{2} given in (20), we obtain from (21) that

$$
\begin{equation*}
u(t)=c_{1} e^{-4 t}+c_{2} e^{2 t}, \quad \text { for } t \in \mathbb{R} \tag{22}
\end{equation*}
$$

where c_{1} and c_{2} are constants.
Differentiating the function u in (22) with respect to t twice then yields

$$
\begin{equation*}
\dot{u}(t)=-4 c_{1} e^{-4 t}+2 c_{2} e^{2 t}, \quad \text { for } t \in \mathbb{R} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{u}(t)=16 c_{1} e^{-4 t}+4 c_{2} e^{2 t}, \quad \text { for } t \in \mathbb{R} \tag{24}
\end{equation*}
$$

Next, compute

$$
\begin{aligned}
8 u(t)-2 \dot{u}(t) & =8\left(c_{1} e^{-4 t}+c_{2} e^{2 t}\right)-2\left(-4 c_{1} e^{-4 t}+2 c_{2} e^{2 t}\right) \\
& =8 c_{1} e^{-4 t}+8 c_{2} e^{2 t}+8 c_{1} e^{-4 t}-4 c_{2} e^{2 t}
\end{aligned}
$$

from which we get that

$$
\begin{equation*}
8 u(t)-2 \dot{u}(t)=16 c_{1} e^{-4 t}+4 c_{2} e^{2 t}, \quad \text { for } t \in \mathbb{R} \tag{25}
\end{equation*}
$$

Comparing (24) and (25), we see that

$$
\ddot{u}(t)=8 u(t)-2 \dot{u}(t), \quad \text { for } t \in \mathbb{R}
$$

which shows that the function u in (22) solves the differential equation in (15).
5. We showed in class that the square of the area of the parallelogram, $\mathcal{P}(u, v)$, determined by vectors u and v in \mathbb{R}^{2} satisfies the equation

$$
\begin{equation*}
(\operatorname{area}(\mathcal{P}(u, v)))^{2}=\|u\|^{2}\|v\|^{2}-(v \cdot u)^{2} \tag{26}
\end{equation*}
$$

(a) Use the expression in (26) and properties of the dot product to derive the expression

$$
\begin{equation*}
\operatorname{area}(\mathcal{P}(u, v)))=\|u\|\|v\| \| \sin \theta \mid \tag{27}
\end{equation*}
$$

where θ is the angle between u and v.
Solution: Use the fact that $v \cdot u=\|v\|\|u\| \cos \theta$ to get from (26) that

$$
\begin{aligned}
(\operatorname{area}(\mathcal{P}(u, v)))^{2} & =\|u\|^{2}\|v\|^{2}-(\|v\|\|u\| \cos \theta)^{2} \\
& =\|u\|^{2}\|v\|^{2}-\|v\|^{2}\|u\|^{2} \cos ^{2} \theta \\
& =\|u\|^{2}\|v\|^{2}\left(1-\cos ^{2} \theta\right)
\end{aligned}
$$

from which we get that

$$
\begin{equation*}
(\operatorname{area}(\mathcal{P}(u, v)))^{2}=\|u\|^{2}\|v\|^{2} \sin ^{2} \theta \tag{28}
\end{equation*}
$$

Taking the positive square root on both sides of (28 yields (27).
(b) Give a geometric explanation of the expression in (27).

Solution: Refer to Figure 3.

Figure 3: Parallelogram determined by u and v
The sketch in Figure 3 shows vectors u and v in standard position in the first quadrant. The sketch also shows the parallelogram, $\mathcal{P}(u, v)$, determined by u and v. The sketch also shows that angle, θ, between and b, and the height, h, of the parallelogram (the distance from v to the line through O in the direction of u.
The area of the parallelogram in Figure 3 is given by

$$
\begin{equation*}
\operatorname{area}(\mathcal{P}(u, v)))=\|u\| h \tag{29}
\end{equation*}
$$

the are of the base times the height.
The line determining the height is perpendicular to the line through O in the direction of u. Hence v is the hypotenuse of a right triangle determined by height line, u and v. Hence, by the definition of the sine function,

$$
\sin \theta=\frac{h}{\|v\|}
$$

from which we get

$$
\begin{equation*}
h=\|v\| \sin \theta . \tag{30}
\end{equation*}
$$

Substituting the expression for h in (30) into (29) yields (27).
(c) When is the area of the parallelogram determined by u and v the largest possible?
Solution: It follows from (27) that $\operatorname{area}(\mathcal{P}(u, v)))$ is the largest when $|\sin \theta|=1$. This occurs when θ is a right angle. Hence, the parallelogram must be a rectangle for its area to be the largest possible.
6. Let A and Q denote the 2×2 matrices $A=\left(\begin{array}{rr}0 & 1 \\ 8 & -2\end{array}\right)$ and $Q=\left(\begin{array}{rr}1 & 1 \\ -4 & 2\end{array}\right)$
(a) Show that Q is invertible, and compute its inverse, Q^{-1}.

Solution: Compute $\operatorname{det}(Q)=6 \neq 0$. Consequently, Q is invertible and its inverse is given by

$$
Q^{-1}=\frac{1}{6}\left(\begin{array}{rr}
2 & -1 \tag{31}\\
4 & 1
\end{array}\right)
$$

(b) Compute $Q^{-1} A Q$. Explain why $Q^{-1} A Q$ is called a diagonal matrix.

Solution: Use the associative property of matrix multiplication to compute

$$
\begin{aligned}
Q^{-1} A Q & =\frac{1}{6}\left(\begin{array}{rr}
2 & -1 \\
4 & 1
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
8 & -2
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-4 & 2
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{rr}
2 & -1 \\
4 & 1
\end{array}\right)\left(\begin{array}{rr}
-4 & 2 \\
16 & 4
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{rr}
-24 & 0 \\
0 & 12
\end{array}\right)
\end{aligned}
$$

so that,

$$
Q^{-1} A Q=\left(\begin{array}{rr}
-4 & 0 \\
0 & 2
\end{array}\right)
$$

This matrix is diagonal because the nonzero entries are along the main diagonal of the matrix.
7. The matrix $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, where λ_{1} and λ_{2} are real numbers, is called a diagonal matrix.
(a) Compute D^{2}, D^{3} and D^{n}, for any positive integer n.

Solution: Compute

$$
\begin{aligned}
D^{2} & =D D \\
& =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{2}^{2}
\end{array}\right) .
\end{aligned}
$$

Next, use the associative property of matrix multiplication to compute

$$
\begin{aligned}
D^{3} & =D D^{2} \\
& =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{2}^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{1}^{3} & 0 \\
0 & \lambda_{2}^{3}
\end{array}\right) .
\end{aligned}
$$

The calculations shown above suggest that

$$
D^{n}=\left(\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right)
$$

for positive integers n.
(b) Assume that $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$. Show that D is invertible and compute D^{-1}.

Solution: In this case, $\operatorname{det}(D)=\lambda_{1} \lambda_{2} \neq 0$; so that, D is invertible and

$$
D^{-1}=\frac{1}{\lambda_{1} \lambda_{2}}\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{1}
\end{array}\right)
$$

or

$$
D^{-1}=\left(\begin{array}{cc}
1 / \lambda_{1} & 0 \\
0 & 1 / \lambda_{2}
\end{array}\right)
$$

or

$$
D^{-1}=\left(\begin{array}{cc}
\lambda_{1}^{-1} & 0 \\
0 & \lambda_{2}^{-1}
\end{array}\right) .
$$

8. Consider the linear system

$$
\left\{\begin{array}{l}
\dot{x}=-3 x+2 y ; \tag{32}\\
\dot{y}=4 x-5 y .
\end{array}\right.
$$

Let

$$
\mathrm{v}_{1}=\binom{1}{-2} \quad \text { and } \quad \mathrm{v}_{2}=\binom{1}{1}
$$

and define the vector value function

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1} e^{-7 t} \mathbf{v}_{1}+c_{2} e^{-t} \mathbf{v}_{2}, \quad \text { for } t \in \mathbb{R} \tag{33}
\end{equation*}
$$

where c_{1} and c_{2} are constants.
(a) Verify that the vector-valued function given in (33) solves the system in (32).

Solution: Write the system in (33) in matrix form

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}, \tag{34}
\end{equation*}
$$

where A is the 2×2 matrix

$$
A=\left(\begin{array}{rr}
-3 & 2 \tag{35}\\
4 & -5
\end{array}\right)
$$

Observe that

$$
A \mathrm{v}_{1}=\left(\begin{array}{rr}
-3 & 2 \\
4 & -5
\end{array}\right)\binom{1}{-2}=\binom{-7}{14}=-7\binom{1}{-2} ;
$$

so that,

$$
\begin{equation*}
A \mathrm{v}_{1}=-7 \mathrm{v}_{1} . \tag{36}
\end{equation*}
$$

Similarly,

$$
A \mathrm{v}_{2}=\left(\begin{array}{rr}
-3 & 2 \\
4 & -5
\end{array}\right)\binom{1}{1}=\binom{-1}{-1}
$$

so that,

$$
\begin{equation*}
A \mathrm{v}_{2}=-\mathrm{v}_{2} \tag{37}
\end{equation*}
$$

Taking the derivative with respect to t of the vector valued function in (33), we obtain

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=c_{1}(-7) e^{-7 t} \mathrm{v}_{1}+c_{2}(-1) e^{-t} \mathrm{v}_{2}, \quad \text { for } t \in \mathbb{R}
$$

so that, using the associative property,

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=c_{1} e^{-7 t}\left(-7 \mathrm{v}_{1}\right)+c_{2} e^{-t}\left(-\mathrm{v}_{2}\right), \quad \text { for } t \in \mathbb{R}
$$

Hence, in view of (36) and (37),

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=c_{1} e^{-7 t} A \mathrm{v}_{1}+c_{2} e^{-t} A \mathrm{v}_{2}, \quad \text { for } t \in \mathbb{R} ;
$$

so that, using the distributive property of matrix multiplication

$$
\begin{equation*}
\binom{\dot{x}(t)}{\dot{y}(t)}=A\left(c_{1} e^{-7 t} \mathrm{v}_{1}+c_{2} e^{-t} \mathrm{v}\right), \quad \text { for } t \in \mathbb{R} . \tag{38}
\end{equation*}
$$

Comparing (33) and (38), we see that

$$
\binom{\dot{x}(t)}{\dot{y}(t)}=A\binom{x(t)}{y(t)}, \quad \text { for } t \in \mathbb{R}
$$

which shows that the vector-valued function in (33) solves the equation in (34), where A is given in (35). The differential equation in (34) is equivalent to the system in (32). Therefore, the vector-valued function given in (33) solves the system in (32), which was to be shown.
(b) Use (33) to sketch trajectories of the system in (32) for the cases
(i) $c_{1}=0$ and $c_{2}=0$;
(ii) $c_{1} \neq 0$ and $c_{2}=0$;

Figure 4: Sketch of solutions in (33) for cases (i), (ii) and (iii)
(iii) $c_{1}=0$ and $c_{2} \neq 0$.

Solution: Refer to the sketch in Figure 4.
(i) If $c_{1}=c_{2}=0$ in (33),

$$
\binom{x(t)}{y(t)}=\binom{0}{0}, \quad \text { for } t \in \mathbb{R}
$$

which corresponds to the equilibrium solution $(0,0)$; this is sketched as a dot in Figure 4.
(ii) If $c_{2}=0$ and $c_{1} \neq 0$ in (33), then

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{1} e^{-7 t} \mathrm{v}_{1}, \quad \text { for } t \in \mathbb{R} . \tag{39}
\end{equation*}
$$

The equation in (39) is the vector-parametric equation of a halfline through the origin in the direction of v_{1} if $c_{1}>0$, or a halfline through the origin through a direction opposite that of v_{1} if $c_{1}<0$. Thus, there are two trajectories on the line parametrized by the equation in (39) that tend to $(0,0)$ because $e^{-7 t}$ decreases to 0 as t increases. These trajectories are shown in the sketch in Figure 4.
(iii) If $c_{1}=0$ and $c_{2} \neq 0$, (33) yields the vector-parametric equation

$$
\begin{equation*}
\binom{x(t)}{y(t)}=c_{2} e^{-t} \mathrm{v}_{2}, \quad \text { for } t \in \mathbb{R} \tag{40}
\end{equation*}
$$

The equation in (40) is a parametrization of two trajectories of the system in (32): a half-line through the origin in the direction of the vector v_{2} corresponding to the case $c_{2}>0$, and a half-line in the opposite direction corresponding to the case $c_{2}<0$. Both trajectories tend towards the origin because e^{-t} decreases to 0 as t increases.
9. Consider the Lotka-Volterra system

$$
\left\{\begin{array}{l}
\dot{x}=x-x y ; \tag{41}\\
\dot{y}=x y-y .
\end{array}\right.
$$

Use the Chain Rule to derive

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} \tag{42}
\end{equation*}
$$

and use this expressions to obtain an equation satisfied by the trajectories of the system in (41) for $x>0$ and $y>0$.
Solution: Use the expression in (42) to obtain the differential equation

$$
\frac{d y}{d x}=\frac{x y-y}{x-x y}
$$

or

$$
\begin{equation*}
\frac{d y}{d x}=\frac{(x-1) y}{x(1-y)} \tag{43}
\end{equation*}
$$

The differential equation in (43) can be separated to yield

$$
\frac{1-y}{y} d y=\frac{x-1}{x} d x
$$

or

$$
\begin{equation*}
\left(\frac{1}{y}-1\right) d y=\left(1-\frac{1}{x}\right) d x \tag{44}
\end{equation*}
$$

Integrating on both sides of (44)

$$
\int\left(\frac{1}{y}-1\right) d y=\int\left(1-\frac{1}{x}\right) d x
$$

yields

$$
\begin{equation*}
\ln |y|-y=x-\ln |x|+C, \tag{45}
\end{equation*}
$$

where C is a constant of integration.
The expression in (45) is an equation satisfied by the trajectories of the system in (41).
10. Let a, b, c and d denote real numbers, and consider the system of linear equations

$$
\left\{\begin{array}{l}
a x+b y=0 \tag{46}\\
c x+d y=0
\end{array}\right.
$$

(a) Explain why $x=y=0$ solves the system in (46). This solution is usually referred to as the trivial solution of the system in (46).
Solution: Substituting 0 for x and 0 for y in the left-hand side of the equations in (46) yields 0 in the left-hand sides of the equations. Thus, the equations are satisfies simultaneously in this case.
(b) Show that, if $a d-b c \neq 0$, then the system in (46) has only the trivial solution.
Solution: The system in (46) can be written in matrix form

$$
\begin{equation*}
A\binom{x}{y}=\binom{0}{0}, \tag{47}
\end{equation*}
$$

where A is the 2×2 matrix given by

$$
A=\left(\begin{array}{ll}
a & b \tag{48}\\
c & d
\end{array}\right)
$$

Since $\operatorname{det}(A)=a d-b c \neq 0$, the matrix A in (47) has an inverse A^{-1}. Multiply on both sides of the equation in (47) by A on the left to get

$$
A^{-1} A\binom{x}{y}=A^{-1}\binom{0}{0}
$$

so that, using the associative property of matrix multiplication,

$$
\left(A^{-1} A\right)\binom{x}{y}=\binom{0}{0}
$$

or

$$
\begin{equation*}
I\binom{x}{y}=\binom{0}{0} \tag{49}
\end{equation*}
$$

where I is the 2×2 identity matrix.
It follows from (49), and the calculations leading to it, that

$$
\binom{x}{y}=\binom{0}{0}
$$

is the only solution of the equation in (47), which is equivalent to the system in (46).
(c) Assume that $a d-b c=0$ and $a \neq 0$. Compute all the solutions of the system in (46) in this case.
Solution: Assume that $a d-b c=0$ and $a \neq 0$.
Then,

$$
\operatorname{det}\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=0
$$

so that, the parallelogram determined by the vectors $\left(\begin{array}{ll}a & b\end{array}\right)$ and $\left(\begin{array}{ll}c & d\end{array}\right)$ has zero area. Consequently, the vector $\left(\begin{array}{ll}a & b\end{array}\right)$ lies in the same line as the vector $\left(\begin{array}{ll}c & d\end{array}\right)$. Therefore, $\left(\begin{array}{ll}a & b\end{array}\right)$ is a scalar multiple of $\left(\begin{array}{ll}c & d\end{array}\right)$; so that

$$
\left(\begin{array}{ll}
a & b
\end{array}\right)=\lambda\left(\begin{array}{ll}
c & d \tag{50}
\end{array}\right) .
$$

It follows from (50) that $\lambda \neq 0$, since we are assuming that $a \neq 0$. Multiply the second equation in (46) by λ to get

$$
\left\{\begin{aligned}
a x+b y & =0 \\
\lambda c x+\lambda d y & =0
\end{aligned}\right.
$$

which, in view of (50), is equivalent to

$$
\left\{\begin{array}{l}
a x+b y=0 \\
a x+b y=0
\end{array}\right.
$$

Hence, the system in (46) reduces to the single equation

$$
\begin{equation*}
a x+b y=0 . \tag{51}
\end{equation*}
$$

Thus, all points on the line in (51) solve the system (46).
Solving the equation in (51) for x yields

$$
\begin{equation*}
x=-\frac{b}{a} y \tag{52}
\end{equation*}
$$

Thus, setting $y=-a t$, where t is a parameter, we obtain the parametric equations

$$
\left\{\begin{array}{l}
x=b t \\
y=-a t
\end{array}\right.
$$

Thus, the solutions of the system in (46) are all the scalar multiples of the vector $\binom{b}{-a}$.

