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Solutions to Review Problems for Exam 3

1. For the linear system of differential equations{
ẋ = y;
ẏ = −2x− 3y,

(a) compute and sketch line–solutions, if any;

Solution: Write the system in vector form(
ẋ
ẏ

)
A

(
x
y

)
, (1)

where A is the 2× 2 matrix

A =

(
0 1
−2 −3

)
. (2)

The characteristic polynomial of the matrix A in (2) is

p
A

(λ) = λ2 + 3λ+ 2,

which factors into
p
A

(λ) = (λ+ 2)(λ+ 1).

Thus, the eigenvalues of the matrix A in (2) are

λ1 = −2 and λ2 = −1.

Next, we find eigenvectors corresponding to the eigenvalues λ1 and λ2.

To find an eigenvector corresponding to λ1 = −2, compute nontrivial so-
lutions of the system

(A− λ1I)

(
x
y

)
=

(
0
0

)
,

where I is the 2× 2 identity matrix, or{
(0− (−2))x+ y = 0;

−2x+ (−3− (−2))y = 0,

or {
2x+ y = 0;
−2x− y = 0,
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which reduces to the equation

2x+ y = 0. (3)

To find solutions of the equation in (3), solve for x,

x = −1

2
y,

and set y = −2t, where t is a real parameter. Then, the solutions of (3)
are the vectors (

x
y

)
=

(
t
−2t

)
, for t ∈ R,

or (
x
y

)
= t

(
1
−2

)
, for t ∈ R. (4)

Taking t = 1 in (4) yields the vector

v1 =

(
1
−2

)
(5)

which is an eigenvector of the matrix A corresponding to the eigenvalue
λ1 = −2.

To find an eigenvector corresponding to λ1 = −1, compute nontrivial so-
lutions of the system

(A− λ2I)

(
x
y

)
=

(
0
0

)
,

or {
(0− (−1))x+ y = 0;

−2x+ (−3− (−1))y = 0,

or {
x+ y = 0;

−2x− 2y = 0,

which reduces to the equation

x+ y = 0. (6)

To find solutions of the equation in (6), solve for x,

x = −y,
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and set y = −t, where t is a real parameter. Then, the solutions of (6) are
the vectors (

x
y

)
=

(
t
−t

)
, for t ∈ R,

or (
x
y

)
= t

(
1
−1

)
, for t ∈ R. (7)

Taking t = 1 in (7) yields the vector

v2 =

(
1
−1

)
(8)

which is an eigenvector of the matrix A corresponding to the eigenvalue
λ2 = −1.

Thus, the line solutions of the system in this problem are

c1e
−2tv1 and c2e

−tv2, for t ∈ R,

where c1 and c2 are non–zero constants, and v1 and v2 are given in (5) and
(8), respectively. These are sketched in Figure 1 along with the equilibrium
solution (0, 0). Note that the direction of these trajectories along the line
four line–solutions in the figures is towards the origin because e−2t and e−t

decrease to 0 as t increases. �

(b) sketch the nullclines;

Solution: The ẋ = 0–nullcline is the line y = 0 or the x–axis. On this
line, the vector field associated with the system in this problem,

F (x, y) =

(
y

−2x− 3y

)
, (9)

is vertical. This is indicated by the vertical arrows drawn across the x–
axis in Figure 1. Note that the arrows point down for positive values of
x, since the field F in (9) points down for y = 0 and x > 0. To see why
this is the case, note that the field F given in (9), when evaluated on the
ẋ = 0–nullcline, yields

F (x, 0) =

(
0
−2x

)
.

Thus, if x > 0 the field F points downwards. By the same token, the
arrows point up for negative values of x.
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x

y

ẋ > 0
ẏ < 0

ẋ < 0
ẏ < 0

ẋ > 0
ẏ > 0

ẋ < 0
ẏ > 0

Figure 1: Sketch of phase portrait of system in Problem 1

The ẏ = 0–nullcline of the system in this problem is the line −2x−3y = 0,

y = −2

3
x.

This line is sketched as a dotted line in the sketch in Figure 1.

On the ẏ = 0–nullcline, the vector field F in (9) evaluates to

F (x, 0) =

(
y
0

)
, for y = −2

3
x. (10)

Thus, the field is horizontal. This is indicated by the horizontal arrows on
the nullcline shown in the figure. Note that, according to (10), the arrows
point to the right above the x–axis (y > 0), and point to the left below
the x–axis (y < 0). �

(c) sketch the phase portrait of the system;

Solution: To sketch the phase portrait of the system in this problem
we use arrows on the nullclines as guide, as well as the signs of ẋ and ẏ
determined by the differential equations, to sketch a few solution curves.
Some of these trajectories are shown in Figure 1. �
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(d) describe the nature of the stability (or unstability) of the origin.

Solution: Since the eigenvalues of the matrix for this problem are both
negative, the origin is an asymptotically stable equilibrium point; it is a
sink. �

2. Let f(x, y) = x2− y2 for all (x, y) ∈ R2, and let F : R2 → R2 be the vector field
F (x, y) = ∇f(x, y), for all (x, y) ∈ R2.

(a) Sketch a contour plot for the function f .

Solution: The contour plot of f consists of the graphs of the equations

x2 − y2 = c, (11)

for various real values of c.

For instance, when c = 0 in (11), we get the equation

x2 − y2 = 0,

or
(x+ y)(x− y) = 0,

which yield the lines
y = x and y = −x.

The graphs of these lines are shown in Figure 2.

When c = 1 in (11) we get the equation

x2 − y2 = 1,

whose graphs are hyperbolas with x–intercepts at (±1, 0) and asymptotes
y = ±x. Indeed, the graphs of the equations in (11) for c > 0 are hyper-
bolas with x–intercepts at (±

√
c, 0) and asymptotes the lines y = ±x. A

couple of these hyperbolas are sketched in Figure 2.

The case c < 0 in (11) yields hyperbolas with y–intercepts at (0,±
√
−c)

and asymptotes the lines y = ±x. A couple of these hyperbolas are
sketched in Figure 2. �

(b) Compute and sketch the flow of the vector field F .

Solution: First, compute the gradient of f ,

∇f(x, y) =
∂f

∂x
(x, y) î+

∂f

∂y
(x, y) ĵ, for all (x, y) ∈ R2,
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x

y

Figure 2: Contour plot of function f in Problem 2

where
∂f

∂x
(x, y) = 2x, for all (x, y) ∈ R2,

and
∂f

∂x
(x, y) = −2y, for all (x, y) ∈ R2.

Consequently,

∇f(x, y) = 2x î− 2y ĵ, for all (x, y) ∈ R2;

so that,
F (x, y) = 2x î− 2y ĵ, for all (x, y) ∈ R2. (12)

The flow of the given vector field F in (12) are solution curves of the system
of differential equations {

ẋ = 2x;
ẏ = −2y.

(13)
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Solutions of the equations in (13) are given by(
x(t)
y(t)

)
=

(
c1e

2t

c2e
−2t

)
, for t ∈ R, (14)

where c1 and c2 are arbitrary constants.

We will now proceed to sketch all types of solution curves determined by
(14). These are determined by values of the parameters c1 and c2. For
instance, when c1 = c2 = 0, (14) yields the equilibrium solution(

x(t)
y(t)

)
=

(
0
0

)
, for all t ∈ R.

We therefore obtain the equilibrium point (0, 0) sketched in Figure 3.

x

y

Figure 3: Sketch of Flow Field in Problem 2

Next, if c1 6= 0 and c2 = 0, then the solution curve(
x(t)
y(t)

)
=

(
c1e

2t

0

)
, for t ∈ R,



Math 32S. Rumbos Spring 2019 8

will lie in the positive x–axis, if c1 > 0, or in the negative x–axis if c1 < 0.
These two possible trajectories are shown in Figure 3. The figure also
shows the trajectories tending away from the origin, as indicated by the
arrows pointing towards origin. The reason for this is that, as t increases,
the exponential e2t increases.

Similarly, for the case c1 = 0 and c2 6= 0, the solution curve(
x(t)
y(t)

)
=

(
0

c2e
−2t

)
, for t ∈ R,

will lie in the positive y–axis, if c2 > 0, or in the negative y–axis if c2 < 0. In
this case, the trajectories point towards the origin because the exponential
function e−2t decreases to 0 as t increases.

The other flow field curves correspond to the case in which c1 · c2 6= 0. To
see what these curves look like, combine the two parametric equations of
the curves, {

x = c1e
2t;

y = c2e
−2t,

(15)

into a single equation involving x and y by eliminating the parameter t.
This can be done by multiplying the equations in (15) to get

xy = c1c2,

or
xy = c, (16)

where we have written c for the product c1c2. The graphs of the equa-
tions in (16) are hyperbolas for c 6= 0. A few of these hyperbolas are
sketched in Figure 3. Observe that all the hyperbolas in the figure have
directions associated with them indicated by the arrows. The directions
can be obtained from the formula for the solution curves in (14) or from
the differential equations in the system in (13). For instance, in the first
quadrant (x > 0 and y > 0), we get from the differential equations in (13)
that x′(t) > 0 and y′(t) < 0 for all t; so that, the values of x along the
trajectories increase, while the y–values decrease. Thus, the arrows point
down and to the right as shown in Figure 3. �

3. Give the formula for an affine function f : R2 → R whose graph contains the
points (1, 4, 7), (4, 7, 0) and (0, 4, 7). Sketch the graph of f .
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Solution: We look for f : R2 → R of the form

f(x, y) = ax+ by + c, for (x, y) ∈ R2, (17)

where a, b and c are to be determined so that
f(1, 4) = 7;
f(4, 7) = 0;
f(0, 4) = 7.

(18)

It follows from (18) and the definition of f in (17) that
a+ 4b+ c = 7;

4a+ 7b+ c = 0;
4b+ c = 7.

(19)

Solving for c in the third equation in (19) yields

c = 7− 4b, (20)

and substituting this in the first two equations in (19),{
a+ 4b+ 7− 4b = 7;

4a+ 7b+ 7− 4b = 0,

or {
a = 0;

4a+ 3b = −7.
(21)

It follows from the equations in (21) that
a = 0;

b = −7

3
.

(22)

It follows from (20) and the second equation in (22) that

c =
49

3
. (23)

Combining (17), (22) and (23), we obtain that

f(x, y) = −7

3
y +

49

3
, for (x, y) ∈ R2. (24)

A sketch of the graph of z = f(x, y), where f is given in (24), is shown in Figure
4. �



Math 32S. Rumbos Spring 2019 10

Computed by Wolfram|Alpha

Figure 4: Sketch of plane in the system in Problem 3

4. Assume that the temperature, T (x, y), at a point (x, y) in the plane is given by

T (x, y) =
100

1 + x2 + y2
, for all (x, y) ∈ R2.

(a) Sketch the contour plot for T .

Solution: The contour plot of T consists of the graphs of the equations

T (x, y) = c, (25)

where c is a positive constant.

The equations in (25) are equivalent to the equations

x2 + y2 =
100

c
− 1, for c > 0. (26)

The equations in (26) describe concentric circles centered at the origin and
of radius √

100

c
− 1,

provided that
100

c
− 1 > 0,
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or
0 < c 6 100. (27)

Thus, the contour plot of T consists of concentric circles around the origin
as pictured in Figure 5. �

x

y

Figure 5: Contour plot of function T in Problem 4

(b) Locate the hottest point in the plane. What is the temperature at that
point?

Solution: The point at (0, 0) in the contour plot in 5) corresponds to
the level c = 100, which, according to (27), is the highest value that the
temperature, T , can take on (see also (25)). Thus, the hottest point in the
plane is the origin, and the temperature at that point is 100. �

(c) Give the direction of greatest increase in temperature at the point (1, 1).
What is the rate of change of temperature in that direction?

Solution: The direction of maximum increase in temperature is that of
the gradient of T at (1, 1), or ∇T (1, 1), where

∇T (x, y) =
∂T

∂x
(x, y) î+

∂T

∂y
(x, y) ĵ, for all (x, y) ∈ R2. (28)
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Compute

∂T

∂x
(x, y) = − 200x

(1 + x2 + y2)2
, for all (x, y) ∈ R2,

and
∂T

∂y
(x, y) = − 200y

(1 + x2 + y2)2
, for all (x, y) ∈ R2.

Then,
∂T

∂x
(1, 1) = −200

9
,

and
∂T

∂y
(1, 1) = −200

9
.

Consequently, according to (28),

∇T (1, 1) = −200

9
î− 200

9
ĵ. (29)

Thus, the direction of greatest increase in temperature at the point (1, 1) is
that of the vector ∇T (1, 1) given in (29), which is the same as the direction
of the unit vector

û = −
√

2

2
î−
√

2

2
î.

The rate of change of temperature in the direction of largest temperature
increase is

DûT (1, 1) = ∇T (1, 1) · û =
200
√

2

9
.

�

(d) A bug moves in the plane along a path given by σ(t) = t î+ t2 ĵ for t ∈ R.
How fast is the temperature changing when t = 1?

Solution: Apply the Chain–Rule to get

d

dt
[T (σ(t))] = ∇T (σ(t)) · σ′(t), for t ∈ R, (30)

where, in this case,

σ′(t) = î+ 2tĵ, for t ∈ R, (31)

Consequently, according to (30), when t = 1,

d

dt
[T (σ(t))]

∣∣∣
t=1

= ∇T (1, 1) · σ′(1), (32)
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where, in view of (31),
σ′(1) = î+ 2ĵ. (33)

It then follows from (32), (29) and (33) that

d

dt
[T (σ(t))]

∣∣∣
t=1

=

(
−200

9
î− 200

9
ĵ

)
· (̂i+ 2ĵ)

= −200

9
(̂i+ ĵ) · (̂i+ 2ĵ)

= −200

9
(1 + 2);

so that,
d

dt
[T (σ(t))]

∣∣∣
t=1

= −200

3
.

Thus, the rate of change of temperature along the path of the bug at t = 1

is −200

3
. �

5. For the linear system of differential equations{
ẋ = x+ y − 1;
ẏ = −x+ y,

(34)

(a) sketch the nullclines and find the equilibrium points;

(b) sketch the phase portrait of the system;

(c) describe the nature of the stability (or unstability) of the equilibrium
points.

Solution:

(a) The ẋ = 0–nullcline is the line x+ y − 1 = 0, or

x+ y = 1. (35)

On the line in (35), the direction of the vector field associated with the
system in this problem,

F (x, y) =

(
x+ y − 1
−x+ y

)
, for (x, y) ∈ R2, (36)
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x

y

ẋ > 0
ẏ < 0

ẋ < 0
ẏ < 0

ẋ < 0

ẏ > 0

ẋ > 0
ẏ > 0

Figure 6: Sketch of phase portrait of system in Problem 5

is vertical. This is indicated by the vertical arrows on the line in (35)
shown in Figure 6. The directions of the arrows are determined by the
signs ẏ determined by the second differential equation in the system in
(34); these signs are shown in the sketch in Figure 6.

The ẏ = 0–nullcline is the line −x+ y = 0, or

y = x. (37)

On this line, the direction of the field F in (36) is horizontal. This is
indicated by the horizontal arrows across the line in (37) shown in the
sketch in Figure 6. The direction of the horizontal arrows is determined
by the signs of ẋ shown in the sketch.

The nullclines in (35) and (37 meet at the equilibrium point

(x.y) =

(
1

2
,
1

2

)
. (38)

This point is shown in the sketch in Figure 6.

(b) To sketch the phase portrait of the system in (34), write the system in
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vector form, (
ẋ
ẏ

)
= A

(
x
y

)
+

(
1
0

)
,

where A is the 2× 2 matrix

A =

(
1 1
−1 1

)
. (39)

The characteristic polynomial of the matrix A in (39) is

p
A

(λ) = λ2 − 2λ+ 2,

which has the complex roots

λ = 1± i.

Since the real part of these eigenvalues, 1, is positive, the trajectories of
the system in (34) will spiral away from the equilibeium point (x, y) in (38)
in the clockwise sense according to the directions across the nollclines. A
few of these spirals are shown in the sketch in Figure 6.

(c) The equilibeium point (x, y) in (38) is an unstable spiral; or a spiral source.

�

6. Sketch the flow of the linear vector field F : R2 → R2 given by

F (x, y) = (6x+ 4y) î− (10x+ 6y) ĵ for (x, y) ∈ R2. (40)

Suggestion: Sketch nullclines and determine the nature of the stability of the
origin.

Solution: The flow of the vector field F in (40) consists of the solution curves
of the system of differential equations{

ẋ = 6x+ 4y;
ẏ = −10x− 6y.

(41)

The system in (41) can be written in vector form as(
ẋ
ẏ

)
= A

(
x
y

)
,
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where A is the 2× 2 matrix

A =

(
6 4
−10 −6

)
(42)

The characteristic polynomial of the matrix A in (42) is

p
A

(λ) = λ2 + 4,

which has purely imaginary roots ±2i. Thus, the eigenvalues of the matrix A in
(42) are purely imaginary. Hence, the orbits of the system in (41) are concentric
ellipses centered at the origin.

To sketch the ellipses making up the phase portrait of the system in (41), we
first sketch the nullclines of the system.

The ẋ = 0–nullcline is the line 6x+ 4y = 0, or

y = −3

2
x. (43)

This line is sketched in Figure 7, along with the vertical arrows across it indi-
cating the fact that the field F in (40) is vertical on this nullcline.

The ẏ = 0–nullcline is the line −10x− 6y = 0, or

y = −5

3
x. (44)

On this line, the vector field F in (40) is horizontal. This is indicated in the
sketch in Figure 7) by the horizontal arrows across the line.

To sketch the ellipses making up the phase portrait, use the arrows on the
nullclines as guides; so that the ellipses are oriented in the clockwise sense. A
few of the ellipses, as well as the equilibrium solution at the origin, are sketched
in Figure 7. �

7. Let f(x, y) =
x+ y

1 + x2
for all (x, y) ∈ R2. Compute the rate of change of f at

(1,−2) in the direction of the vector v = 3̂i− 2ĵ.

Solution: We compute

Dûf(1,−2) = ∇f(1,−2) · û, (45)
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x

y

Figure 7: Sketch of flow of vector–field in Problem 6

where û is a unit vector in the direction of the vector v; so that,

û =
3√
13
î− 2√

13
ĵ. (46)

The gradient of f is given by

∇f(x, y) =
∂f

∂x
(x, y) î+

∂f

∂y
(x, y) ĵ, for all (x, y) ∈ R2. (47)

where, applying the Quotient Rule,

∂f

∂x
(x, y) =

∂

∂x

[
x+ y

1 + x2

]

=
(1 + x2)(1)− (x+ y)(2x)

(1 + x2)2

=
1 + x2 − 2x2 − 2xy

(1 + x2)2
;
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so that,
∂f

∂x
(x, y) =

1− x2 − 2xy

(1 + x2)2
, for (x, y) ∈ R2. (48)

Similarly,
∂f

∂y
(x, y) =

∂

∂y

[
x+ y

1 + x2

]

=
(1 + x2)(1)− (x+ y)(0)

(1 + x2)2

=
1 + x2

(1 + x2)2
;

so that,
∂f

∂y
(x, y) =

1

1 + x2
, for (x, y) ∈ R2. (49)

Combining (47), (48) and (49),

∇f(x, y) =
1− x2 − 2xy

(1 + x2)2
î+

1

1 + x2
ĵ, for all (x, y) ∈ R2. (50)

Evaluating the expression of the gradient of f in (50) at the point (1,−2) then
yields

∇f(1,−2) = î+
1

2
ĵ. (51)

Finally, using (45), (46) and (51), we compute

Dûf(1,−2) =

(
î+

1

2
ĵ

)
·
(

3√
13
î− 2√

13
ĵ

)

=
3√
13
− 2√

13

=
1√
13
.

Hence, the rate of change of f at (1,−2) in the direction of the vector v = 3̂i−2ĵ

is

√
13

13
. �
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8. Let f : R2 → R have continuous partial derivatives for all (x, y) ∈ R. Let C
denote the level curve f(x, y) = c, for some constant c. Let (a, b) be a point on
the curve C; so that f(a, b) = c. Assume that

∂f

∂y
(a, b) 6= 0. (52)

Use the Chain Rule to compute the slope of the line tangent to C at the point
(a, b).

Solution: Let σ : I → R2 be parametrization of the portion of the curve C
that contains the point (a, b). Assume that 0 ∈ I and that

σ(0) = (a, b). (53)

We are given that
f(σ(t)) = c, for all t ∈ I. (54)

Take the derivative with respect to t on both sides of the expression in (54) to
get

d

dt
[f(σ(t))] = 0, for all t ∈ I, (55)

since c is constant.

Applying the Chain–Rule in the left–hand side of (55) yields

∇f(σ(t)) · σ′(t) = 0, for all t ∈ I, (56)

where

∇f(x, y) =
∂f

∂x
(x, y) î+

∂f

∂y
(x, y) ĵ, for all (x, y) ∈ R2. (57)

Writing
σ(t) = (x(t), y(t)), for t ∈ I, (58)

we have that

σ′(t) =
dx

dt
î+

dy

dt
ĵ, for all t ∈ I. (59)

Substituting the expression for ∇f in (57) and the expression for σ′ in (59) in
the left–hand side of (56), we obtain(

∂f

∂x
(x, y) î+

∂f

∂y
(x, y) ĵ

)
·
(
dx

dt
î+

dy

dt
ĵ

)
= 0, for t ∈ I,
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or
∂f

∂x
(σ(t))

dx

dt
+
∂f

∂y
(σ(t))

dy

dt
= 0, for t ∈ I. (60)

Substituting t = 0 in (60) and using (53) we obtain

∂f

∂x
(a, b)

dx

dt
+
∂f

∂y
(a, b)

dy

dt
= 0. (61)

Assuming that (52) holds true, we can solve (61) for
dy

dt
to get

dy

dt
= −

∂f

∂x
(a, b)

∂f

∂y
(a, b)

dx

dt
. (62)

Assuming that y′(x) =
dy

dx
exists, we can use the Chain–Rule to compute

dy

dt
= y′(x)

dx

dt
,

from which we get that

y′(x) =

dy

dt
dx

dt

;

so that, in view of (62),

y′(x) = −

∂f

∂x
(a, b)

∂f

∂y
(a, b)

.

�

9. Let D = {(x, y) ∈ R2 | y 6= 0} and define f : D → R be given by f(x, y) = yex/y,
for all (x, y) ∈ D.

Give the linear approximation to f at the point (1, 1).

Solution: The linear approximation to f at (1, 1) is

L(x, y) = f(1, 1) +
∂f

∂x
(1, 1)(x− 1) +

∂f

∂y
(1, 1)(y − 1), for (x, y) ∈ R2, (63)
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where, using the Chain–Rule,

∂f

∂x
(x, y) = y

∂

∂x
[ex/y]

= yex/y
∂

∂x

(
x

y

)

= yex/y
1

y
;

so that,
∂f

∂x
(x, y) = ex/y, for (x, y) ∈ D. (64)

Similarly, using the Product Rule and the Chain–Rule,

∂f

∂y
(x, y) =

∂

∂y
[yex/y]

= ex/y + yex/y
∂

∂y

(
x

y

)

= ex/y + yex/y
(
− x

y2

)

= ex/y − x

y
yex/y;

so that,
∂f

∂y
(x, y) =

(
1− x

y

)
ex/y, for (x, y) ∈ D. (65)

Evaluating the partial derivatives of f in (64) and (65) at (1, 1), we obtain

∂f

∂x
(1, 1) = e and

∂f

∂y
(1, 1) = 0.

Substituting these values into the expression for the linear approximation to f
at (1, 1) then yields

L(x, y) = e+ e(x− 1), for (x, y) ∈ R2,

or
L(x, y) = ex, for (x, y) ∈ R2.

�
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10. Let f(x, y) = x2 + y2 for all (x, y) ∈ R2. Sketch the flow of the vector field
F (x, y) = ∇f(x, y), for all (x, y) ∈ R2.

Solution: First, compute the gradient of f ,

∇f(x, y) =
∂f

∂x
(x, y) î+

∂f

∂y
(x, y) ĵ, for all (x, y) ∈ R2,

where
∂f

∂x
(x, y) = 2x, for all (x, y) ∈ R2,

and
∂f

∂x
(x, y) = 2y, for all (x, y) ∈ R2.

Consequently,

∇f(x, y) = 2x î+ 2y ĵ, for all (x, y) ∈ R2;

so that,
F (x, y) = 2x î+ 2y ĵ, for all (x, y) ∈ R2. (66)

The flow of the given vector field F in (66) are solution curves of the system of
differential equations {

ẋ = 2x;
ẏ = 2y.

(67)

Solutions of the equations in (67) are given by(
x(t)
y(t)

)
=

(
c1e

2t

c2e
2t

)
, for t ∈ R, (68)

where c1 and c2 are arbitrary constants.

We will now proceed to sketch all types of solution curves determined by (68).
These are determined by values of the parameters c1 and c2. For instance, when
c1 = c2 = 0, (68) yields the equilibrium solution(

x(t)
y(t)

)
=

(
0
0

)
, for all t ∈ R.

We therefore obtain the equilibrium point (0, 0) sketched in Figure 8.

Next, if c1 6= 0 and c2 = 0, then the solution curve(
x(t)
y(t)

)
=

(
c1e

2t

0

)
, for t ∈ R,
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x

y

Figure 8: Sketch of Flow Field in Problem 10

will lie in the positive x–axis, if c1 > 0, or in the negative x–axis if c1 < 0.
These two possible trajectories are shown in Figure 8. The figure also shows the
trajectories tending away from the origin, as indicated by the arrows pointing
away from the origin in the figure. The reason for this is that, as t increases,
the exponential e2t increases.

Similarly, for the case c1 = 0 and c2 6= 0, the solution curve(
x(t)
y(t)

)
=

(
0

c2e
2t

)
, for t ∈ R,

will lie in the positive y–axis, if c2 > 0, or in the negative y–axis if c2 < 0. In this
case, the trajectories also point away from the origin because the exponential
function e2t increases to 0 as t increases.

The other flow field curves correspond to the case in which c1 6= 0 and c2 6= 0.
To see what these curves look like, combine the two parametric equations of the
curves, {

x = c1e
2t;

y = c2e
2t,

(69)
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into a single equation involving x and y by eliminating the parameter t. This
can be done by solving for e2t in the first equation in (69),

e2t =
1

c1
x,

and substituting in the second equation in (69) to get to get

y =
c2
c1
x,

or
y = cx, (70)

where we have written c for the ratio c2/c1. The graphs of the equations in (70)
are straight lines through the origin of slope c 6= 0. A few of these lines are
sketched in Figure 8. Observe that all the line–solutions in the figure emanate
from the origin as indicated by the arrows. The directions can be obtained from
the formula for the solution curves in (68) or from the differential equations in
the system in (67). For instance, in the first quadrant (x > 0 and y > 0), we
get from the differential equations in (67) that x′(t) > 0 and y′(t) > 0 for all t;
so that, the values of x and y along the trajectories increase. Thus, the arrows
point away from the origin in Figure 8. �


