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Chapter 1

Preface

The main goal of this course is to provide opportunities for students to con-
struct and analyze mathematical models that arise in the physical, biological
and social sciences. Mathematical models are usually created in order to obtain
understanding of problems and situations arising in the real world; other times,
the main goal is to make predictions or to control certain processes; finally, some
models are created in order to aid in decision making.

Construction of a mathematical model consists of translating a real world
problem into a mathematical problem involving parameters, variables, functions,
equations and/or inequalities. Analysis of the model involves the solution (if
possible) of the mathematical problem through logical, algebraic, analytical or
computational means, and assessing what the solutions imply about the real
situation under study. If an analytical or computational solution is not possible,
computer simulations can sometimes be used in order to study various scenarios
implied or predicted by the model.

Analysis techniques can be drawn from many areas of mathematics. In this
course, it is assumed that students have a good working knowledge of Calculus,
Linear Algebra and Ordinary Differential Equations. These areas are adequate
for the analysis of some models. However, many modeling situations require the
use of some probability theory and optimization. These mathematical topics
will be covered in the course. In calculus and differential equations courses,
students have been exposed to some continuous models. In this course, we will
also introduce students to discrete models as well.



CHAPTER 1. PREFACE



Chapter 2

The Process of Modeling

In this course we identify four stages in the process of mathematical modeling:
1. Problem formulation
2. Construction of the model
3. Analysis of the model
4. Testing of the model

We will get a chance to go through at least the second and third stages listed
above in a variety of case studies or examples.

Of course, the modeling process always begins with a question that we want
to answer, or a problem we have to solve. Often, asking the right questions and
posing the right problems can be the hardest part in the modeling process. This
part of the process involves getting acquainted with the intricacies of the science
involved in the particular question at hand. It is unrealistic to expect that a
mathematical modeling course will teach students to do this in a systematic way.
The best we can do is to present many case studies and examples of real life
modeling situations that mathematicians have analyzed in various situations.
One of the goals of the course is to have students grapple with this issue when
working with a specific problem in a term project that will involve a large portion
of the course.

2.1 Constructing Models

Model construction involves the translation of a scientific question or problem
into a mathematical one. The hope here is that answering the mathematical
question, or solving the mathematical problem, if possible, might shed some light
in the understanding of the situation being studied. In a physical science, this
process is usually attained through the use of established scientific principles or
laws that can be stated in mathematical terms. In general, though, we might not
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8 CHAPTER 2. MODELING PROCESS

have the advantage of having at our disposal a large body of scientific principles.
This is particularly the case if scientific principles have not been discovered yet
(in fact, the reason we might be resorting to mathematical modeling is that,
perhaps, mathematics can aid in the discovery of those principles).

2.1.1 Conservation Principles

There are, however, a few general and simple principles that can be applied in a
variety of situations. For instance, in this course we’ll have several opportunities
to apply conservation principles. These are rather general principles that
can be applied in situations in which the evolution in time of the quantity of
a certain entity within a certain system is studied. For instance, suppose the
quantity of a certain substance confined within a system is given by a continuous
function of time, ¢, and is denoted by Q(¢) (the assumption of continuity is one
that needs to be justified by the situation at hand). A conservation principle
states that the rate at which a the quantity Q(t) changes has to be accounted
by how much of the substance goes into the system and how much of it goes
out of the system. For the case in which @ is also assumed to be differentiable
(again, this is a mathematical assumption that would need some justification),
the conservation principle can be succinctly stated as

d
d—cf = Rate of () in — Rate of Q) out. (2.1)

In this case, the conservation principle might lead to a differential equation, or
a system of differential equations, and so the theory of differential equations can
be used to help in the analysis of the model.

2.1.2 Constitutive Equations

The right-hand side of the equation in (2.1) requires further modeling; in other
words, we need to postulate a kind of functional form for the rates in the right—
hand side of (2.1). This might take the general form, after rewriting the equation
in (2.1),

d
CZi?:f(t?627A17A2a"'7Ap)7 (22)
where {A1, A2,...,Ap} is a collection of parameters that are relevant to the real-

life problem being modeled. The functional form of the right—hand side in (2.2)
may be obtained from empirical or theoretical of relations between variables,
usually referred to as constitutive equations.

In the next subsection we present the first case study of the course in which
we see the first three stages in the construction of models outlined at the start
of this chapter.
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2.2 Example: Bacterial Growth in a Chemostat

The example presented in this subsection is discussed on page 121 of [EK88].
The diagram in Figure 2.2.1 shows schematically what goes on in a chemostat
that is used to harvest bacteria at a constant rate. The box in the top—left

Co

Figure 2.2.1: Chemostat

portion of the diagram in Figure 2.2.1 represents a stock of nutrient at a fixed
concentration c¢,, in units of mass per volume. Nutrient flows into the bacterial
culture chamber at a constant rate F', in units of volume per time. The chamber
contains N (t) bacteria at time ¢. The chamber also contains an amount Q(t) of
nutrient, in units of mass, at time ¢. If we assume that the culture in the chamber
is kept well-stirred, so that there are no spatial variations in the concentration
of nutrient and bacteria, we have that the nutrient concentration is a function
of time given by

e(t) = ~ (2.3)

where V' is the volume of the culture chamber. If we assume that the culture in
the chamber is harvested at a constant rate F', as depicted in the bottom-right
portion of the diagram in Figure 2.2.1, the volume, V', of the culture in equation
(2.3) is fixed.

We will later make use of the bacterial density,

n(t) = —=2, (2.4)

in the culture at time t¢.
The parameters, c,, F' and V', introduced so far can be chosen or adjusted.
The problem at hand, then, is to design a chemostat system so that

1. The flow rate, F, will not be so high that the bacteria in the culture will
be washed out, and
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2. the nutrient replenishment, c,, is sufficient to maintain the growth of the
colony.

In addition to assuming that the culture in the chamber is kept well-stirred
and that the rate of flow into and out of the chamber are the same, we will also
make the following assumptions:

1. the bacterial colony depends on only one nutrient for growth;

2. the growth rate of the bacterial population is a function of the nutrient
concentration; in other words, the per—capita growth rate, K(c), is a func-
tion of c.

We will apply a conservation principle to the quantities N(t) and Q(¢) in
the growth chamber.
For the number of bacteria in the culture, the conservation principle in (2.1)

reads:

dN
v Rate of N in — Rate of N out. (2.5)

We are assuming here that IV is a differentiable function of time. This assump-
tion is justified if

(i) we are dealing with populations of very large size so that the addition (or
removal) of a few individuals is not very significant; for example, in the
case of a bacterial colony, N is of the order of 10° cells per milliliter;

(ii) “there are no distinct population changes that occur at timed intervals,”
see [EK88, pg. 117].

Using the constitutive assumption stated previously, we have that
Rate of N in = K(c)N, (2.6)

since K (c) is the per—capita growth rate of the bacterial population.
Since culture is taken out of the chamber at a rate F', we have that

Rate of N out = Fn, (2.7)

where n is the bacterial density defined in (2.4). We can therefore rewrite (2.5)
as

— = K(¢)N — =N. (2.8)
Next, apply the conservation principle (2.1) to the amount of nutrient, Q(t),

in the chamber, where
Rate of Q in = Fle,, (2.9)

and
Rate of Q out = Fc+ aK(c)N, (2.10)
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where we have introduced another parameter, «, which measures the fraction of
nutrient that is being consumed as a result of bacterial growth. The reciprocal

of the parameter «,

1
Y =—,
«

measures the number of cells produced because of consumption of one unit of
nutrient, and is usually referred to as the yield.

Combining (2.10), (2.9) and (2.1) we see that the conservation principle for
@ takes the form

d

d—? = Fe, — Fe— aK(c)N. (2.11)
Using the definition of ¢ in (2.3) we can rewrite (2.11) as

dQ F

o = Fc, — VQ—OAK(C)N. (2.12)

The differential equations in (2.8) and (2.12) yield the system of differential
equations

dN F
E = K(C)N — VN,

(2.13)
aQ

i Fe, — gQ —aK(c)N.
Thus, application of conservation principles and a few constitutive assumptions
has yielded a system of ordinary differential equations (2.13) for the variables N
and @ in the chemostat system. We have therefore constructed a preliminary
mathematical model for bacterial growth in a chemostat.

Dividing the equations in (2.13) by the fixed volume, V, of the culture in
the chamber, we obtain the following system of ordinary differential equations
for the bacterial population density, n(t), and the nutrient concentration, c(t).

dn F
il K(e)n — 7
(2.14)
dc F
T ey aK(c)n.

Thus, we have arrived at a mathematical model that describes the evolution in
time of the bacterial population density and nutrient concentration in a chemo-
stat system. We will analyze the system in (2.14) in subsequent sections.

2.3 Analysis of Models

In the process of constructing the differential equations model expressed in the
system in (2.14) we made several simplifying assumptions; for instance, we as-
sumed that the mixture in the culture is well-stirred and that the volume V'
is fixed, so that the bacterial density and nutrient concentration are functions
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of a single variable, t. We also assumed that these are differentiable functions.
Simplification is an important part of the modeling process; otherwise the math-
ematical problem might be intractable.

2.3.1 Nondimensionalization

In this section we illustrate yet another way to simplify the problem that consists
of introducing dimensionless variables (variables without units). This process
is known as nondimensionalization, and it has the added benefit of decreasing
the number of parameters in the system, reducing thereby the complexity of the
problem. We illustrate this procedure in the analysis of the chemostat system
in (2.14).

Note that the system in (2.14) has four parameters; namely, ¢,, F, V and .
Before proceeding with the analysis of system (2.14), we will use the constitutive

equation
K(e) = (2.15)
c) = .
a+c’
where a and b are two additional positive parameters. Thus, the system in

(2.14) becomes

d£ _ bnc —En'
dt =~ a+c V'
(2.16)
@ B E _E B abne
i~ VeIV are

with six parameters. A procedure that consolidates the set of parameters into
a smaller set will greatly simplify the analysis.

The constitutive equation in (2.15) is borrowed from the Michaelis—Menten
theory of enzyme kinetics. It models the per—capita growth rate, K(c), of the
bacterial population as an increasing function of the nutrient concentration with
a limiting value b; hence, b has the units of a per—capita growth rate, namely,
1/time. The parameter a has units of concentration (mass/volume), and it
represents the value of the nutrient concentration at which the per—capita growth
rate, K(c), is half of its limiting value. Figure 2.3.2 shows a sketch of the graph
of K as a function of ¢ as given by (2.15).

Nondimensionalizing the system in (2.16) consists of introducing new vari-
ables, 7, ¢ and T, to replace n, ¢ and t, respectively, in such a way that 7, ¢ and
7 have no units, or dimensions. This can be achieved by scaling the variables
n, ¢ and t by appropriate scaling factors so that the units will cancel out. For
instance, we can scale ¢ by the parameter a, since they have the same units, to
get

e=< 2.17)
c= (
It is not clear at the moment what the scaling factor for n and ¢ should be, so
we shall denote them by p and A, respectively. We then have that,

n
A=, (2.18)
n
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Figure 2.3.2: Sketch of Graph of K(c)

and

T =

> (2.19)

where p has units of bacterial density (cells/volume), and A has units of time.

Next, we find expressions for the derivatives
dn de
— d —. 2.20
dr a dr ( )

To find the expressions in (2.20) we need to apply the Chain Rule; for instance,
dn dn dt

dr — dt dr

To compute the right-hand side of (2.21), we use (2.18) and (2.19) to obtain
from (2.21) that

(2.21)

dn  Xdn
—_—= . 2.22
dr pdt ( )

d
Next, substitute the expression for % in the first equation in (2.16) into the
right-hand side of (2.22) to obtain

dn /\[bnE F ]

4|2 2 2.2
1+e v" (2.23)

dr p
where we have also used the expression for ¢ in (2.17). Distributing on the
right-hand side of (2.23) we obtain

dn ne  AF
— E— 2.24
dr /\bl Teovh (2.24)

where we have used (2.18).
We will now choose A so that

=1, (2.25)
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from which we get that
v

A== 2.26
. (2:26)
is our scaling factor for ¢; observe that the parameter A in (2.26) has units of
time.

Next, we consolidate the parameters b and A into a single parameter, which
will call ay, by the formula

Ab =y, (2.27)
which yields
1%
= o (2.28)

by the use the definition of A in (2.26). Note that «; in (2.28) is dimensionless
since b has units of 1/time. Combining (2.24), (2.25) and (2.27), we obtain the
dimensionless differential equation

dn ne

— = —— — 2.29
dr g +c " ( )
Similar calculations (see Problem 1 in Assignment 2) show that
de nc
= -¢ 2.30
dr 2T +c . ( )
where we have set .
=2 2.31
ar = (231)
and
abAp
= 1’
a
so that a
= —. 2.32
p=—s (2.32)

Note that the parameter ap in (2.31) is dimensionless and that that the units
of y1 defined in (2.32) are cells/volume.
Putting together the equations in (2.29) and (2.30) we obtain the system

dn nc .
— = a—— T
dr 1ye ’
(2.33)
dc nc
— = a9 — —C
dr 271y ©

in the dimensionless variables 77, ¢ and 7 defined in (2.18), (2.17) and (2.19),
respectively. Observe that the system in (2.33) contains two dimensionless pa-
rameters, a; and «s, as opposed to the six parameters in the original system
in (2.16). This reduction in the number of parameters greatly simplifies the
problem in two aspects:
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1. the mathematical calculations are simpler to perform;

2. the dimensionless parameters, a;; and as, consolidate the information con-
tained in the six original parameters, and this makes the analysis easier
to carry out.

For instance, the equilibrium points of the system in (2.33) are expressed in
terms of the parameters a;; and as as follows

o it (oo ) L)

In order to obtain biologically feasible equilibrium solutions, we must require
that

o > 1 (2.35)

and

Qg >

. 2.
a1 (2.36)

In terms of the original parameters, conditions (2.35) and (2.36) translate into

F <bV
and
. aF
T BV —F’
respectively.

“

The equilibrium solution (0, az) in (2.34) is referred to as the “washout”
solution, since all the bacteria washes out because of the flow; while the second
solution in (2.34) is the “survival” solution.

Stability analysis of the dimensionless system in (2.33) will reveal further
conditions that determine whether the chemostat system will yield a sustainable
crop of bacteria. Some of this analysis is carried out in Assignment 2.

2.4 Example: Modeling the Spread of an Infec-
tious Disease

In this section we present another example that illustrates the modeling pro-
cess. This example is from epidemiology. We construct a simple model for a
disease that is spread through infections transmitted between individuals in a
population. Assume the population is divided into three compartments pictured
in Figure 2.4.3. The first compartment, S(¢), denotes the set of individuals in
the population that are susceptible to acquiring the disease; the second com-
partment, I(t), denotes the set of infected individual who can also infect others;
and the third compartment, R(¢), denotes the set of individuals who had the
disease and who have recovered from it; they can no longer get infected.
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Figure 2.4.3: SIR Compartments

S(t), I(t) and R(t) also denote the numbers of susceptible, infectious and
recovered individuals, respectively, in the population at time ¢t > 0. S, I and
R are assumed to be differentiable functions of ¢. We assume that the total
number of individuals in the population remains constant; so that,

St)+1I(t)+ R(t)=N, forallt>0,

for some parameter N.
In addition to the assumptions that we have made so far, we assume the
following:

e Susceptible individuals can get infected by contact with infectious individ-
uals and move to the infected class. This is indicated by the arrow going
from the S(t) compartment to the I(¢) compartment in Figure 2.4.3. In
this simple model, we assume that the individuals in compartment R(t)
can no longer get infected.

e The rate at which susceptible individuals get infected is proportional num-
ber of encounters between susceptible and infected individuals per capita.
Since the the number of encounters between susceptible and infected in-
dividuals is proportional to the product SI, for large values of S and I,
we can write this assertion in symbols as

Rate of Infection = %, (2.37)
where 3 is a constant of proportionality. The parameter 8 in (2.37) is then
the fraction of encounters per capita between susceptible and infected
individuals that result in new infections per unit time; it therefore has
units of 1/time.

e The rate at which infected individuals recover is proportional to the num-
ber of infected individuals with constant of proportionality v > 0. We can
write this in symbols as

Rate of Recovery = ~1. (2.38)

The parameter « in (2.38) has units of 1 per time.
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We can apply conservation principles for the quantities S(t), I(t) and R(t),
in each of the compartments in Figure 2.4.3, respectively. For instance, for the
compartment on the left of the figure,

d
d—f = Rate of S in — Rate of S out, (2.39)

since we are assuming that S is a diferentiable function of ¢.
According to the flow diagram in Figure 2.4.3, for the S(t) compartment,

Rateof Sin =0

and

Rate of S out = @

Consequently, in view of (2.39),

s  BSI
== (2.40)

Similar calculations for the other two compartments in Figure 2.4.3 lead to
the ordinary differential equations

dl  BSI
— ==~ 2.41
7= N (2.41)

and
aRr _
dt
Putting together the equatins in (2.40), (2.41) and (2.42) leads to the system

of differential equations for the functions S, I and R:

1. (2.42)

s _  _BSI

dt N’

dI BSI

il A~ 2.43
o ~ 0k (2.43)
dR

= = ~I.

dt i

The system in (2.43) is an example of a basic epidemic model first studied
mathematically by Kermack and McKendrick in 1927. It was originally proposed
by Sir Ronald Ross and others in the first decade of the 20th century (see
discussion on page 4 in [And91]). The system of ODEs in (2.43) is usually
referred to as an SIR model.

Some of the questions we want to answer in the analysis of the SIR model
in (2.43) are
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(i) Given that the initial numbers S(0), 1(0) and R(0) of individuals in each
compartment are known, can we predict what the numbers will be at
later times? In particular, will there be a time at which the number of
infected individuals in the population increases? This would correspond
to an outbreak of the disease.

(ii) Can information contained in the parameters § and v be used to determine
whether or not there will be an outbreak?

In the remainder of this section, we present an analysis of the SIR model in
(2.43). We begin by writing the system in dimensionless form.
Introduce dimensionless variables
_ R(t) t

()
- =7 = =— 2.44
s =" =" =2 ed r=o (244)
for some scaling factor, A, in units of time, to be determined shortly.
Next, use the change of variables in (2.44) and the chain rule to obtain from
the first equation in (2.43) that

ds _ ds de
dr — dt dr
_ AdS
Nt
_ _ApSI
B N N~
so that, using (2.44) again,
d
L~ _Basi. (2.45)
dr

Similar calculations for the second equation in (2.43) yield

di
- ABsi — A\vyi; (2.46)
dr

and, for the third equation in (2.43),

d
@ AYi. (2.47)
dr

Define the dimensionless parameter

A8 =R,, (2.48)

and set
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so tat,
A=—, (2.49)

and
, (2.50)

by virtue of (2.48).
Next, substitute (2.48) and (2.49) into the equations in (2.45), (2.46) and
(2.47) to obtain the dimensionless system

ds

E = _Rosi;

di

&~ Rysi—i (2.51)
dr

dr .

— = 4.

dr
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Chapter 3

Continuous Deterministic
Models

The chemostat model discussed in the previous chapter is an example of a
continuous model—all the variables in question, N, @ and ¢, are assumed to
be continuous variables (in fact, we assumed that N and @ are differentiable
functions of t). Application of conservation principles, in that case, led to a
system of ordinary differential equations, which also makes the chemostat model
discussed in the previous chapter a deterministic model—the solutions of the
model are completely determined by the parameters in the model and by the
initial conditions; in particular, a given set of initial conditions and parameters
give rise to the same predictions every time the model is run.

In this chapter we present another kind of deterministic model that involves
quantities that depend continuously on more than one variable. We will again
apply a conservation principle; however, in this case we will get a partial differ-
ential equation model. In subsequent sections in this chapter we will present an
approach to analysis of the equations that result from this process. In particular,
we will see an application to modeling traffic flow.

3.1 Example: Modeling Traffic Flow

Consider the unidirectional flow of traffic in a one-lane, straight road depicted
in Figure 3.1.1. In this idealized road, vehicles are modeled by moving points.
The location, x, of a point—vehicle is measured from some reference point along
an axis parallel to the road. We postulate a traffic density, p(z,t), measured in
units of number of cars per unit length of road at location x and time ¢t. We
interpret p(x,t) as follows: Consider a section of the road from x to = + Ax
at time t. Let AN([z,z + Ax],t) denote the number of cars in the section
[z, z + Az] at time t. We define p(z,t) by the expression

p(at) = tim SN(@z+ Al Y)

Az 0 Az ’ (3.1)

21
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vie— Voo ——>

Figure 3.1.1: One-lane unidirectional flow

provided that the limit on the right-hand side of (3.1) exists.
Next, let a and b be arbitrary real numbers with a < b, and consider a
section of the road from x = a to x = b pictured in Figure 3.1.2. Using the

r=a r=2>b

Figure 3.1.2: Section of road from x =atoxz =5

traffic density, p(x,t), we calculate the number of vehicles in the section [a, b]
at time t to be given by the integral

b
N(t) = / p(x,t) de, forallt > 0. (3.2)
a

If we assume that density, p(x,t), is a differentiable function, we can state a
conservation principle for the number of cars in section [a, b] as follows:
dN

v Rate of cars in — Rate of cars out. (3.3)

In the simple traffic flow to be discussed in this section, we assume that cars
can only enter the section at x = a, and can only leave the section at x = b.
Thus, the conservation principle in (3.3) can be rewritten as

dN
—— = Number of cars entering at a — Number of cars leaving at b.  (3.4)

dt
We can rewrite the conservation principle in (3.4) more succinctly by postulating
a traffic flux function, ¢(z,t), which measures the number of cars crossing
location x per unit of time at time ¢. Using the traffic flux function we can then
rewrite (3.4) as
dN
dt
dN
O = la.1) — gfa,)] (35)

= Q(avt) - q(b, t),

or



3.1. EXAMPLE: MODELING TRAFFIC FLOW 23

Assuming that the flux function is differentiable and that its partial derivatives
are continuous, we can invoke the Fundamental Theorem of Calculus to re-write
(3.5) as

N b
d—t = —/ ((%[q(x,t)] dx, forallt > 0. (3.6)

Next, assume that the traffic density, p, has continuous partial derivatives
to obtain from (3.2) that
dN b9

o= at[ p(z,t)] de, forallt >0, (3.7)

a

where we have applied a theorem about differentiating under the integral sign
discussed in Appendix A.1 (see, for instance, Proposition A.1.1 on page 103 in
these notes).

Combining (3.7) and (3.6) we then see that the conservation principle in
(3.5) now takes the form

b b
/a 8875[ (z,t)] doe = */a %[q(m,t)] dx, forallt>0. (3.8)

Rewrite the equation in (3.8) as

) e
—_ = >
/a 5 [p(x,1)] der/a 8:10[ q(z,t)] dr =0, forallt>0,
or

b
/a {gt[ ()] + ai[ (z, )}] dr =0, forallt=0. (3.9)

We remark here that we are assuming that the points a and b in (3.9) are
arbitrary. Then, since we are assuming that the partial derivatives of p and ¢
are continuous, we can show (see for instance Proposition A.2.1 in Appendix
A.2 in these notes) that, given that (3.9) holds true for all intervals [a, b], then
we must have that

0 0
_ — = > .
5 [p(x,t)] + 5 [q(z,t)] =0, forallt>0 (3.10)

The equation in (3.10) is an example of a partial differential equation or

PDE. It is usually written in a more compact form
dp Oq
—+—=0 3.11
ot * ox ’ (3.11)

or
pr+ s =0, (3.12)

where the subscripts in (3.12) indicate partial derivatives with respect to the
subscripted variables.
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Ideally, we would like to find a solution, p, to (3.11) subject to some initial
condition

p(z,0) = po(z), (3.13)

for some initial traffic density profile, p,, along the road.
Before we proceed any further, we need to model the traffic flux, q(z,t).
Imagine a vehicle at x is moving with a velocity v. Then, for a short time
interval [t,t + At], the car moves a distance approximately give by

Ax =~ vAt.
The number of cars in the section [z, z + Az] is then, approximately, given by
AN = p(z,t)vAt. (3.14)

Dividing (3.14) by At and letting At — 0, we obtain from (3.14) the rate of
cars crossing the location x at time ¢; in other words, the traffic flux, ¢(z,t).
We therefore obtain the constitutive equation

q=vp. (3.15)
Substituting the expression for ¢ into (3.11) we obtain
dp 0
b =0. 1
T + e [vp] =0 (3.16)

The next step is to model the velocity v in (3.16). It is reasonable to assume
that v is a function of traffic density—the higher the density, the lower the traffic
speed. We may therefore write

v = f(pa A)7 (317)

where f is a continuous function of p and a set of parameters, A. Some of the
parameters might be a maximum density, pmax, dictated by bumper to bumper
traffic, and a maximum speed, Vnyax; for instance, vyay is a speed limit. Given
the parameters ppax and vpax, the simplest model for the relationship between
v and p is the constitutive equation

U = Umax <1— p ) (3.18)

Pmax

Later in this course we shall shall see how to derive expressions like (3.18)
relating traffic velocity to traffic density from theoretical considerations; for
now, we simply note that it models the intuitive notion that we stated above
regarding the traffic velocity being low for high traffic density.

The partial differential equation model for traffic flow presented in this sec-
tion, based on the conservation equation in (3.16) and a constitutive relation
for the traffic velocity, v, and the traffic density p (of which (3.18) is just an
example), was first introduced by Lighthill and Whitman in 1955 (see [LW55]);
it was also treated by Richards in 1956, [Ric56].
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3.2 Analysis of the Traffic Flow Equation

In this section we outline an analysis of the equation in (3.16) with v as given

in (3.18); namely,
op 0 p B
ot * ox |:'Umax <1 pmax> p:| =0 (319)

We are interested in answering the question of whether the partial differential
equation in (3.19) has a solution satisfying an initial condition of the form in
(3.13); namely,

p(z,0) = po(z), (3.20)

where p, is some given continuous function of x.
Before we proceed with the analysis, we nondimensionalize the equation in
(3.19) by introducing dimensionless variables

p T t
U= , &=—, and T=-, 3.21)
Pmax p A (

where p and A are some characteristic lengths and time scaling factors, respec-
tively.
Next, use the Chain Rule to compute
Ou  Ou Ot
or ot or’

so that, using the first and last equations in (3.21),

% N p:l\ax%' (322
Similarly, using the Chain Rule and the second expression in (3.21,
0 P 0 0 0&
g e (1= ) o] = oo | (0520 5
or
g [ (1= 52 ) o] = P2 2 -, (323)

where we have also used the definition of u in (3.21.
Now, combine the differential equation in (3.19) with the expression in (3.22)

to get
Ou__ X 9 (1),
or Pmax ox Pmax

or, in view of (3.23),

ou _)\vmax ﬁ

ar JTS

[(1—w)u], (3.24)
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where we have also used the definition of u in (3.21). After rearranging (3.24)
we get

ou  Avpax O
s — (1= = 2
S e (= ] = (3.25)
Setting
UmaxA 1.
1

or, equivalently, choosing the time scale A to be p/vmax, we see that we can
rewrite (3.25) as

o + —=[(1—u)u] =0. (3.26)

The equation in (3.26) is now in dimensionless form. If the original time and
space variables, t and x, are assumed to be in units of A\ and u, respectively, we
can then rewrite the equation in (3.26) as

ou 0
4 2 (1 — = 2
(- w)u] =0, (3:27)
where u, « and ¢ represent real (dimensionless) variables. The equation in (3.27)
is the one we’ll be analyzing for the remainder of this section.
Set
g(u) = u(l —u); (3.28)

then, the partial differential equation in (3.27) can be written in the form

ou 0

55 T 55 Wl =0, (3.29)
or P P

KL g =

5 towg =0. (3.30)

We will describe here a general procedure for analyzing the equation in (3.29)
for the case in which ¢ is a differentiable function. We begin by presenting the
simplest example, that of a linear function

g(u) = cu,

for some constant ¢. The equation in (3.30) then becomes the linear first order
partial differential equation

ou ou
o Te5 =0 (3.31)

We will show how to find a solution to the differential equation in (3.31) subject
to the initial condition

u(z,0) = f(x), (3.32)

where f is some differentiable function of a single variable.
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The problem of determining a solution of the differential equation in (3.31)
subject to the condition in (3.32) is an example of initial value problem and is
usually written in a the more compact form

% cﬁ—u = 0, reR, t>0;
u(z,0) = f(z), RSN

Example 3.2.1 (The Method of Characteristic Curves). We can arrive at a so-
lution to the initial value problem in (3.33) by using the method of characteristic
curves.

A characteristic curve in the xt—plane, parametrized by

t— (x(t),t), forteR, (3.34)

is obtained as follows. First, evaluate the function u on the curve in (3.34) to
obtain a real-valued function of a single variable

t—u(z(t),t), forteR. (3.35)

Differentiate with respect to ¢ the function defined in (3.35), using the chain
rule, to obtain

D u(e(r), ) = 290y

T R P TR T T

which we can rewrite as p 5 P
U u x Ou
E—E—FE%. (3.36)
Comparing the right—hand side of the equation in (3.36) with the left—hand side
of the partial differential equation in (3.33), we see that if we choose the curve
in (3.34) so tat
dz

— = 3.37
e, (3.37)
then the equation in (3.36) turns into

du

—— =0. 3.38

= (3.38)

The ordinary differential equation in (3.37) defines a family of curves in the
rt—plane give by
x=ct+k, (3.39)

where k is a real parameter. The curves in (3.39) are straight lines of slope 1/¢
in the xt-plane; some of the curves for the case ¢ > 0 are pictured in Figure
3.2.3.

The curves in (3.39) are called the characteristic curves of the partial dif-
ferential equation in (3.33) and are defined by the ordinary differential equation
in (3.37).



28 CHAPTER 3. CONTINUOUS DETERMINISTIC MODELS
t

Figure 3.2.3: Characteristic Curves for (3.33)

Since the equation in (3.38) was derived by differentiating u along a char-
acteristic curve, it implies that u is constant along characteristics. We can
therefore conclude from (3.38) that

u = constant along characteristics. (3.40)

The equation in (3.40) allows us to obtain a formula for u(z,t), where (z,t) lies
along the characteristic indexed by k in (3.39) as follows

u(x,t) = k), (3.41)

where (k) denotes the constant value of u along the characteristic in (3.39)
indexed by k.

Solving for k in (3.39) and substituting into (3.41) yields a general formula
for computing a solution to the partial differential equation in (3.33):

u(z,t) = p(x — ct). (3.42)
Substituting the initial condition (3.33) into (3.42) yields
p(r) = f(z), forallzeR,

so that
u(z,t) = f(xr—ct), forzeR, teR, (3.43)

solves the initial value problem (3.33). The expression in (3.43) says that the
solution of (3.33) is a traveling wave, which moves to the right with speed c if
¢ > 0, or to the left if ¢ < 0. In other words, the initial profile, f(x), propagates
without distortion with velocity ¢. The solution in (3.43) is also known as an
advection wave and the partial differential equation in (3.33) is known as the
advection equation.

The method of characteristic curves illustrated in Example 3.2.1 also applies
to nonlinear equations. The analysis is more involved, but in some cases it yields
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a lot of information about solutions of the equation. In the next example we
consider the case in which 1
g(u) = §u2 (3.44)

in (3.29). Thus, in view of (3.30) and (3.44), the partial differential equation in
(3.29) becomes
Ou ou
ot or
The partial differential equation in (3.45) is known as the inviscid Burgers’
equation.

0. (3.45)

Example 3.2.2 (Inviscid Burgers’ Equation). Solve the equation in (3.45) sub-
ject to the initial condition

u(xv 0) = f(fﬂ),
where f is some given continuous function; in other words, solve the initial value
problem

%+u@ = 0, reR, t>0;
u(z,0) = f(x), z eR.

We proceed as in Example 3.2.1 by first obtaining the equation for the charac-
teristic curves i
x
primic (3.47)
In this case we cannot solve directly for the characteristic curves. However, as in
Example 3.2.1, a solution, w, of the partial differential equation in (3.46) must
solve the ordinary differential equation

du
— 4
i 0 (3.48)

along characteristic curves. Thus, u must be constant along the characteristic
curves given by (3.47). Thus, we can solve (3.48) to yield

u(z,t) = o(k), (3.49)

where ¢(k) denotes the constant value of v along the characteristic curve given
by (3.47) and indexed by k. We can then rewrite (3.47) as

dx

which can be solved to yield the characteristic curves
x = pk)t+k. (3.50)

Hence, according to (3.50), the characteristic curves of the partial differential
equation in (3.46) are straight lines in the zt—plane whose slopes depend on the
value of u on them.
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Solving for the right-most & in (3.50) and substituting into (3.49), we obtain
an expression that defines u implicitly

u(x,t) = cp(x - u(m,t)t), (351)

where we have used the expression for ¢(k) in (3.49).
Finally, employing the initial condition in (3.46), we obtain from (3.51) that

u(z,t) = fx —u(z, t)t). (3.52)

In subsequent examples we will see realizations of the implicit formula in
(3.52) for specific initial conditions f.

Example 3.2.3 (Inviscid Burgers’ Equation, Continued). Solve the initial value
problem in (3.46) where the initial condition is given by

fl@)=2, forallzeR. (3.53)
In this case the expression in (3.52) defining v implicitly reads
u(z,t) =z —u(x, t)t, (3.54)
in view of (3.53). Solving the expression in (3.54) for u(x,t) yields

u(z,t) = , forallz€Randt > 0. (3.55)

x
1+t
Example 3.2.4 (Inviscid Burgers’ Equation, Continued). Solve the initial value
problem in (3.46) where the initial condition is given by

flx)=1—z, forallzeR. (3.56)
In this case the expression in (3.52) defining v implicitly reads

u(z,t) =1— (z — u(z, t)t), (3.57)

in view of (3.56). Solving the expression in (3.57) for u(x,t) yields

1—x
1—-t’

u(z,t) = forallz e Rand 0 <t < 1. (3.58)

It is interesting to notice the strikingly different results obtained in Examples
3.2.3 and 3.2.4. In Example (3.2.4), the solution, u(x,t), given in (3.58) ceases
to exist at t = 1; while the solution in Example 3.2.3 exists for all positive
values of ¢, according to (3.55). In subsequent examples we try to explain why
the two examples display vastly different results by examining the method of
characteristic curves more carefully.
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Figure 3.2.4: Sketch of the graph of f in (3.59)

Example 3.2.5 (Inviscid Burgers’ Equation, Continued). Solve the initial value
problem in (3.46) where the initial condition is given by

0, ifz<0;
fl@)y=<z, if0<z<l; (3.59)
1, ifz>1.

Figure 3.2.4 shows a sketch of the initial condition, f. The characteristic curves
for the differential equation in (3.46) are solutions to the ordinary differential
equation

dx

— =u. 3.60

at (3.60)
Along the characteristic curves, u solves the ordinary differential equation

du

— =0 3.61

o =0 (3.61)

which implies that u is constant along characteristics so that
u(z, t) = o(k), (3.62)

for some parameter k, depending on the particular characteristic curve, and ¢
is some arbitrary real-valued function. Solving (3.60) for u given by (3.62) we
obtain the equation for the characteristic curves:

x=@(k)t+k. (3.63)

Next, solve for k in (3.63) and substitute in (3.62) to obtain that w is given
implicitly by
u(z,t) = o(x — u(z, t)t). (3.64)

Using the initial condition in (3.46), we obtain from (3.64) that
o(x) = f(x), forallzeR, (3.65)

so that
u(z,t) = fx —u(z, t)t). (3.66)
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It follows from (3.63) and (3.65) that the characteristic curves are given by the
equations
x = f(k)t+k; (3.67)

thus, according to (3.67), the characteristic curves of the partial differential
equation in (3.46) are straight lines of slope 1/f(k) going through the point
(k,0) on the z—axis. In particular, for k¥ < 0 the characteristic curves are the
vertical lines

=k,

since f(k) =0 for k£ < 0.
Now, for 0 < k < 1, the characteristic curves are the straight lines

x=k(t+1).
Finally, for & > 1, the characteristic lines are the straight lines of slope 1
r=t+k.

A sketch of the characteristic curves is shown in Figure 3.2.5. Notice that the

.

Figure 3.2.5: Sketch of the characteristic curves for (3.46) with f given in (3.59)

characteristic curves for 0 < k£ < 1 fan out from the ¢t—axis to the line z = ¢t + 1.
Since the solution, u, of the initial value problem in (3.46) is constant along
characteristic curves (see the equations in (3.61) and (3.62)), the sketch in Figure
3.2.5 shows that u can be computed by traveling back along the characteristic
curves to the initial time, ¢ = 0, and reading off the value of f(k) for the
particular point k£ on the z—axis. Thus, in theory, the initial value problem in
(3.46) with initial condition given in (3.59) can be solved, and the solution is
unique. In this case we can write down a formula for u(z, t):

0, if £ <0, 0;
T
u(x,t) = T fo<ax<t+1,t>0; (3.68)
1, ifz>t+1,t>0.
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The fanning out of the characteristic curves pictured in Figure 3.2.5 has the
effect of stretching the initial profile for u in the x direction. This is shown in
Figure 3.2.6, where a sketch of u(z,t) as given in (3.68) is shown for ¢ = 0 and
t = 1; the initial profile is shown in dashed lines.

U

Figure 3.2.6: Sketch of the graph of u(x,t) for t =0 and t =1

The nature of the solutions to the initial value problem in (3.46) changes
dramatically when the following initial profile is used.

1, if £ <0
flx)=<R1-2, f0o<z<l; (3.69)
0, ifz > 1.

A sketch of the graph of f in (3.69) is shown in Figure 3.2.7.
f

Figure 3.2.7: Sketch of the graph of f in (3.69)

Example 3.2.6 (Inviscid Burgers’ Equation, Continued). Solve the initial value
problem in (3.46) where f is as given in (3.69).

Proceeding as in Example 3.2.6, we sketch the characteristic curves in Figure
3.2.8. In Figure 3.2.8 we see that the characteristic curves,

x = f(k)t+k, (3.70)

for 0 < k < 1, instead of fanning out, bunch in and all meet at the single point
with coordinates (1,1) in the xt—plane. To see why this is the case, take two of
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Figure 3.2.8: Sketch of the characteristic curves for (3.46) with f given in (3.69)

the characteristic curves in (3.70) with equations
x = f(k1)t+ ki1, (3.71)

and
T = f(kg)t + ko, (372)

with 0 < k1 < k2 < 1. To find the intersection of the lines in (3.71) and (3.72),
set the equations equal to each other and use the definition of f in (3.69), so
that f(k) =1—k, for 0 < k < 1, to get that

(I —k))t+ k= (1 — ko)t + ko,

from which we get that ¢ = 1. Thus, u(z,t) ceases to exist in the usual sense at
t=1.

As in Example 3.2.5, we can obtain a formula for computing u(z,t), at least
for t < 1:

1, ifer<t<l;
1 —

u(z,t) = 17_13 ift <2< 1; (3.73)
0, ifx>1t<1.

Figure 3.2.9 shows a picture of the graph of u(x,t), for t = 1/2, as a function
x. As t approaches 1 from the left, we see from (3.73) that the profile of u(x,t)
approaches that shown in Figure 3.2.10. Thus, as t — 17, u(x,t) develops a
jump discontinuity.

As seen in Example 3.2.6, a solution of the initial value problem in (3.46),
where f is as given in (3.69), ceases to exist in the usual sense at t = 1. However,
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u

Figure 3.2.9: Sketch of the graph of u(z,t) in (3.73) for t =1/2
u

Figure 3.2.10: Sketch of the graph of u(x,t) in (3.73) as t — 1~

some sort of solution, known as a shock wave, does exist in a generalized sense.
This generalized solution, or weak solutions as it is also called, will not solve the
partial differential equation, but it will solve the integral equation formulation
of the conservation principle that led to the partial differential equation. For
the case of the inviscid Burgers’ equation, the conservation principle is

d [
&/ u(z,t) de = Flux at a — Flux at b, (3.74)
for all a,b € R with a < b, where the flux is given by
1
F(x,t) = i[u(x,t)]Q. (3.75)

Combining (3.74) and (3.75), the equation in (3.74) can be written as

d b
dt J,

for all a,b € R with a < b.

The conservation principle in (3.76) can be used to describe what happens
to the solution after a shock forms; for instance, after ¢ = 1 in Example 3.2.6.
We saw in that example that a jump discontinuity develops. The discontinuity
will continue to travel along some curve in the xt—plane parametrized by a path
of the form

1 , 1 ,
u(z,t) de = §[u(a,t)] - i[u(b, t)]°, (3.76)

ts (o(t), 1), (3.77)



36 CHAPTER 3. CONTINUOUS DETERMINISTIC MODELS

where o is a differentiable function of a single variable with continuous deriva-
tive.

We would like to describe the path in (3.77). In order to do this, we assume
that the path in (3.77) is differentiable with continuous derivative (in other
words, the path in (3.77) is a C! path). We also assume that u has a jump
discontinuity along the path in (3.77), so that the one sided limits

u (t)= lim wu(z,t) and wut(t)= lim wu(z,t) (3.78)
z—o(t)~ z—o(t)t
exist. For instance, in Example 3.2.6 we saw that the solution to the inviscid
Burgers’ equation with the initial condition in (3.69) has a jump discontinuity
at t = 1 with

v (1)=1 and w*(1)=0. (3.79)
The conservation expression in (3.74) states that the quantity
b
Q(a,b,t) :/ u(zx,t) dx, (3.80)
is conserved. Using (3.80), we can re-write (3.76) as
d 1 1
a[Q(m b,t)] = i[u(a,t)]2 - i[u(b, t)]?,  for any a,b € R with a < b. (3.81)

Consider the quantity Q(a,b,t) over a short time interval [¢,t + At].
We have by the definition of @ in (3.80) that

o(t+At)
Q(o(t), o(t + At),t + At) = / w(z,t + Ab) da, (3.82)
o(t)

where we have set a = o(t) and b = o(t+ At). Using (3.78) we can approximate
(3.82) as follows

Qo(t),o(t + Ab),t + At) = u~ () (o(t + At) — o(t)) (3.83)

since u(x,t + At) is to the left of the shock for At > 0 (see Figure 3.2.11).
Similarly, we get from (3.80) and (3.78) that

Qo(t),o(t+ At),t) = ut (t)(o(t + At) — o(t)) (3.84)
It follows from (3.83) and (3.84) that
Qo(t), ot + At), t + At) — Q(o(t), o(t + At), t)

At
(3.85)
< o () () L=,
Letting At — 0 in (3.85) we obtain
dQ _ do
B _ (1) () % (3.56)



3.2. ANALYSIS OF THE TRAFFIC FLOW EQUATION 37
t

a(t) o(t+ At)
Figure 3.2.11: Path of a shock solution for (3.46) with f given in (3.69)

across the shock.
On the other hand, for any 7 € (¢,t + At) we have that

o .1 S IR PR T

Jim [ Luto(0), 7 - (ot + a0, 2| = Lo - Tt s
(see Figure 3.2.11).

Next, combine (3.86), (3.87) and the conservation principle in (3.76) to get

_ do 1. _

(1) w09 = Lm0 — S0 (3.59)

Since the map t — (o(t),t) defines the path of shock wave solution along which
a jump discontinuity of u travels, it follows that u™ () # u™(¢) for all ¢ at which

a shock wave solution exists. We can therefore solve for d—ctf in (3.88) to get
differential equation for the path of the shock wave:

dr 5l OF — SO
dt u(t) —ut(t)
which can be rewritten as
Loy e 1o o
do 5[“ ()] —§[U ()]
dat  ut)—u (1) (389)

The derivation leading to (3.89) works for any flux g(u), so that the equation
determining the path of shock wave solution for which a conservation principle

%[Q(m b, t)] = g(u(a,t)) — g(u(db,t)), forany a,be R witha <b, (3.90)
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where .

Q(a,b,t) :/ u(zx,t) dx,

is given by
do _ g(u'(t) — g(u”(t))
dt ut(t) —u (t)
The equation in (3.91) will be used in the analysis of shock wave solutions for
the traffic flow equation in (3.29) for the case in which the flux is given by

g(u) = u(l —u).

Example 3.2.7 (Inviscid Burgers’ Equation, Continued). We saw in Example
3.2.6 that the solution to the initial value problem in (3.46) where f is as given
in (3.69) develops a shock at ¢ = 1. The solution after ¢ = 1 has a jump
discontinuity that travels along the path

(3.91)

te(o(t),1)
determined by the differential equation

do  u (t) +ut(t)

—_— = 3.92

0 5 : (3.92)
where uT and w~ are given in (3.79). The differential equation in (3.92) was
obtained from (3.89), and it gives the path that the jump discontinuity will
follow after the shock forms. In this case we have

dr _1
a2’
so that y
o(t) = 3 +ec. (3.93)
Since o(1) = 1, we get from (3.93) that
1
73

in (3.93). We therefore get the following formula for the weak solution to initial
value problem discussed in Example 3.2.6:

t+1

L ifr<——t>1
u(x,t) = (3.94)
t+1
0, ifa> %,t > 1.

Figure 3.2.12 shows a picture of some of the characteristic curves for (3.46)
with f given in (3.69), which also incorporates the shock wave solution that we
derived in (3.94).
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Figure 3.2.12: Sketch of the characteristic curves for (3.46) with f given in
(3.69) with shock wave solution

Example 3.2.8 (Shock Wave Solutions for the Traffic Flow Equation). In this
example we consider the initial value problem

ou ou

—+Jd(w)— = 0

8t +g( )al‘ (395)
u(z,0) = f(z),

where g(u) = u(1l —u) for 0 < u < 1, and the initial traffic density, f, is given
by

uy, for x < O0;
= 3.96
f(@) {1, for x > 0, ( )

1
for some positive constant uq, with uy < 3 A sketch of the graph of the initial

U1

Figure 3.2.13: Initial Traffic Density

traffic density, f, in (3.96) is shown in Figure 3.2.13.
The equation for the characteristic curves for the PDE in (3.95) is

Yy, (3.97)
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where
g (u) =1—2u. (3.98)

Along characteristic curves, u solves the differential equation
du
— =0,
dt

so that w is constant along characteristics; that is,

u=o(k), (3.99)

where (k) denotes the constant value of u along the characteristic indexed by k.
Substituting the value of u in (3.99) into the equation for the characteristics in
(3.97) and solving the characteristics equation, we obtain that the characteristic
curves are given by

x =g (p(k)t+k; (3.100)

so that the characteristic curves are straight lines in the zt—plane of slope
1/¢'(p(k)) and z—intercept k.
For k < 0, according to (3.96), the formula for the characteristic curves in
(3.100) yields
x =g (u)t +k; (3.101)
so that, for k& < 0, the characteristics are parallel lines of slope 1/¢'(u1). It
1
follows from (3.98), and the assumption u; < 2 that the lines in (3.101) have
positive slope as pictured in Figure 3.2.14. The reason for this is that g(u) is

t

Figure 3.2.14: Characteristic Curves

1
increasing for 0 < u < 5 as seen in the graph of g versus u shown in Figure
3.2.15.
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uy 1 u

Figure 3.2.15: Sketch of graph of g versus u

On the other hand, for k > 0 the characteristic curves are given by the
equations
=g )t+k,

or
x=—t+k, (3.102)

where we have used (3.98). The characteristic curves given in (3.102) are also
pictured in Figure 3.2.14. We see in the figure that characteristics overlap
starting at ¢ = 0. Thus, a shock wave solutions develops at that time. To find
the path, t — (o(t),t), of the shock wave, we use the condition derived in (3.91)
with = = u; and u™ = 1, so that

dfO’ . 1(1—1)—”1(1—”1)

dt 1—U1 ’

or

do

— = —uy. 3.103
iy (3.103)
Solving for o(¢) in (3.103) and using the condition ¢(0) = 0, we obtain that the
path of the shock wave is

o(t) = —ust, fort>0.

Thus, the shock wave moves to the left with speed wy. This corresponds to
the the start of bumper-to-bumper traffic moving to the left at speed u;. A
picture of the shock wave solution and the characteristic curves is shown in
Figure 3.2.16.
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Figure 3.2.16: Traffic Shock Wave



Chapter 4

Stochastic Models

The models discussed in the previous chapter have been deterministic—the vari-
ables used in the models are completely determined by the values of a set of
parameters and the values of the variables at some initial point or curve. For
instance, when modeling bacterial growth, the number of bacteria in a culture
at time, ¢, might be modeled by a continuous variable, N (t), which satisfies the

initial value problem
N N
o= (1 B K> !
t (4.1)

N(O) = Nm

known as the logistic model. The model in (4.1) was derived in Assignment
#1 as a special case of the bacterial growth in a chemostat model presented
in Section 2.2 of these notes. The parameters in the equation in (4.1) are
the intrinsic growth rate, r, and the carrying capacity of the growth medium,
K. Given values for the parameters » and K, and the size of the bacterial
population, N,, at time ¢t = 0, the values of population size, N(t), for later
values of ¢, are completely determined by the formula

_ N,K
N, + (K — N,)et’

N(t) for t > 0. (4.2)
Thus, if an experiment is performed in which N, bacteria, whose intrinsic growth
rate is r, are placed in a growth medium with carrying capacity, K, at time
t = 0, then the number of bacteria, N(t), in the culture at time ¢t > 0 will
be given by (4.2). The experiment may be repeated many times; if the same
initial condition holds, and the values of the parameters are the same, the same
population value, N(¢), at some time later will be that given by (4.2).

The Logistic growth scenario described in the previous paragraphs is to be
contrasted with the situation in which, in addition to finding out how many
bacteria, N(t), are present at time ¢, we want to know how many of those

43
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bacteria develop a certain type of mutation. Here, an element of chance needs
to be introduced in the model. Each of the N(t) bacteria present at time t
might or might not develop of a mutation in a short time interval [t,t + At]; it
is not possible to predict with certainty whether a given bacterium will develop
a mutation. Thus, if we let M(t) be the number of bacteria that develop a
mutation during the time interval [0, ¢], then every time we run the experiment
of placing N, bacteria in a culture at time ¢ = 0, under the same conditions,
and count the number of bacteria that have developed the mutation at time ¢,
we will not get the same value for M (t). Thus, M(¢) is not a function in the
usual sense that we understand that term. After a time interval of length ¢,
M (t) can take on a range of values, and each value has a certain likelihood or
probability of occurring. This notion of a “function” M (t) whose values cannot
be predicted, but for which we can obtain a measure of their likelihood is what
is known as a random variable.

4.1 Random Variables

If M(t) denotes the number of bacteria that develop a mutation from an initial
number N, in a time interval [0,¢], it is reasonable to model it as a random
variable. Roughly speaking, random variables are quantities that are determined
from outcomes of a random experiment. A random experiment is a process
which can be repeated indefinitely under the same set of conditions, but whose
outcome cannot be predicted with certainty before the experiment is performed.
For instance, suppose you start with one bacterium in a medium conducive to
growth; ¢ units of time later we count how many out of the N(¢) bacteria have
developed a mutation. The number of bacteria, M(t), that have developed the
mutation is a random variable.

Even though we are not able to predict with certainty what specific value
the random variable, M (t), will take on at time ¢, in many modeling situations
we are able to ascertain the likelihood, or probability, that M (¢) will take on a
range of values.

Example 4.1.1. Suppose that two bacteria, a and b, can randomly develop a
mutation in a unit of time. Assume that each bacterium can mutate at most
once in the unit of time of the experiment. Let M denote the number of bacteria
out of the two that develop mutations after one unit of time. Then M can take
on the values 0, 1, or 2. We cannot predict precisely what value M will take on.
Any time we run the experiment of placing the two bacteria under observation
and counting the number of mutations we may get any of the possible values.
M is thus an example of a random variable. The best we can hope for is an
estimate of the probabilities that M can take on any of the possible values; in
symbols, we want to estimate

Pr(M =k), for k=0,1,2, (4.3)
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4.1.1 A Brief Excursion into Probability

The expression Pr(M = k) in (4.3) denotes the probability of the event (M = k);
that is, Pr(M = k) gives a a measure of the likelihood that k bacteria out of
the two in Example 4.1.1 will develop a mutation.

An event is a possible outcome, or set of outcomes, of a random experiment.
In Example 4.1.1, the event denoted by (M = k) represents a set of outcomes
in which k of the two bacteria have developed a mutation.

A probability function assigns a real value between 0 and 1 to an event. A
probability of 0 means an impossible event, and a probability of 1 means that
the event will surely happen. The assignments of probability between 0 and 1
will depend on assumptions made about the experiment at hand.

In order to compute the probabilities of the events (M = k), for k =0,1,2,
in Example 4.1.1, we need to make some assumptions regarding how mutations
occur. Let A denote the event that bacterium a develops a mutation and B the
event that bacterium b develops a mutation in one unit of time. Suppose we are
told that the probability that a bacterium will develop a mutation is p, where
0 <p <1 (pis called the mutation rate). We then have that

Pr(A)=p and Pr(B)=p. (4.4)

We assume that the event that A occurs will not affect the probability of event
B. We say that A and B are stochastically independent.

Definition 4.1.2 (Stochastic Independence). We say that events A and B are
stochastically independent if the probability of the joint occurrence of A and B
is the product of the individual probabilities. In symbols,

Pr(An B) =Pr(A) - Pr(B), (4.5)
where A N B denotes the event that both A and B happen jointly.

In Example 4.1.1, AN B corresponds to the event that both bacteria develop
a mutation in a unit of time. Thus,

ANB=(M=2).
Thus, the independence assumption implies that
Pr(M =2) = Pr(A) - Pr(B) =p-p = p?, (4.6)

where we have used (4.5) and (4.4).
We next see how to compute Pr(M = 0) and Pr(M = 1) in Example 4.1.1.

Definition 4.1.3 (Complement of an Event). Given and event, A, the event
that A does not occur is called the complement of A and is denoted by A°€.

IFor example, in the experiment of tossing a “fair die,” it is assumed that all faces of the
die are equally likely; thus, the probability of any given face is 1/6.
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Thus, in Example 4.1.1, A€ is the event that bacterium a does not develop
a mutation in one unit of time. Observe that A and A°¢ are mutually exclusive;
that is, if A occurs then A° cannot occur.

Definition 4.1.4 (Disjoint Events). Events A and B are said to be disjoint if
and only if AN B = (), where the set AN B denotes the event that both A and
B occur.

Definition 4.1.5 (Mutually Exclusive Events). Events A and B are said to be
mutually exclusive if and only if A and B are disjoint and Pr(AUB) = 1, where
the set AU B denotes the event that either A or B occurs.

Definition 4.1.6 (Probability of Disjoint Events). If A and B are disjoint
events, then
Pr(AU B) = Pr(4) + Pr(B) (4.7)

For example, since A and A€ are mutually exclusive, it follows that
Pr(AU A€) = Pr(A) + Pr(A°).

On the other hand, Pr(AU A€) = 1, since AU A€ is a sure event. It then follows
that
Pr(A) + P(A°) =1,

from which we get the following property of the probability function.
Proposition 4.1.7 (Probability of Complementary Event).
Pr(A°) =1—Pr(A). (4.8)

Definition 4.1.8 (Set Difference). Given any events A and B, we define the
set
A\B={xze€ Al|zx¢B}.

Note that A\B and B are disjoint, by Definition 4.1.8. Furthermore,
A= BU(A\B). (4.9)
We therefore have the following proposition.

Proposition 4.1.9 (Probability of Difference of Events). Given events A and
B, with B C A,
Pr(A\B) = Pr(A) — Pr(B). (4.10)

Proof: Tt follows from (4.9) and Definition 4.1.6 that
Pr(A) = Pr(B) + Pr(A\B),
which implies (4.10). W

As a consequence of the properties of probability that we have discussed so
far, we have the following proposition.
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Proposition 4.1.10 (Probability of Union of Events). For any two events, A
and B,
Pr(AUB) =Pr(A) + Pr(B) — Pr(AN B). (4.11)

Proof: Note that AN B C A. Thus, applying Proposition 4.1.9,

Pr(A\(ANB)) =Pr(A) — Pr(AN B), (4.12)
where
zxe A\(ANB) iff z€Aandag ANB
iff zr€Adandx¢ B
ifft e AN B¢,
so that

A\(ANB)=AnB". (4.13)
Substituting (4.13) into (4.12) then yields
Pr(AN B¢ =Pr(4) — Pr(ANB). (4.14)
Similar calculations show that
Pr(Bn A°) = Pr(B) — Pr(AN B). (4.15)
Observing that
AUB=(ANB°)U(BNA°)U(ANB), (4.16)

where AN B¢, BN B° and AN B are disjoint, we get from (4.16) and Definition
4.1.6 that

Pr(AUB) =Pr(ANB°) +Pr(BNA°) +Pr(AN B). (4.17)
Combining (4.14), (4.15) and (4.17) yields (4.11). M

Example 4.1.11 (Continuation of Example 4.1.1.). Let A, B and M be as in
Example 4.1.1. In this example we compute Pr[M = 0] and Pr[M = 1].
The probability that bacterium a will not mutate is

Pr(A°) =1-p, (4.18)

where we have used (4.8) and (4.4). Likewise, the probability that bacterium b
will not mutate is
Pr(B°)=1-p. (4.19)

Since A° and B¢ are independent, it follows from (4.5) and (4.19) that
Pr(A°NB°) = P(A°) - P(B°) = (1-p)-(1-p) = (1-p)*.

In other words, the probability that no mutation occurs is (1—p)?. We therefore
have that
Pr[M = 0] = P(A°N B°) = (1 — p)*. (4.20)
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To compute P[M = 1], first observe that
[M =1=(ANB°U(A°N B), (4.21)

where the events AN B¢ and A°N B are mutually exclusive. It then follows from
(4.7) and (4.21) that

P[M =1] = P(AN B) + P(A°N B). (4.22)

Next, use the independence of the events A and B¢ to compute

P(ANBY) — Pr(A)-Pr(B°)
— Pr(A)(1 - Px(B)) (4.23)
= p(l - p)a

where we have used Definition 4.1.2, Proposition 4.1.7 and (4.4). Similarly,
P(A°NB) =(1-p)p. (4.24)
Combining (4.22), (4.23) and (4.24) then yields
Pr[M = 1] = 2(1 - p)p. (4.25)
In order to compute Pr[M = 0], first observe that
[M =0] = A°N B¢
so that, by virtue of the independence of A¢ and B¢,

Pr[M =0] = Pr(4°) - Pr(B°)
(4.26)
= (1-p*
where we have used (4.18) and (4.19).

Putting together the results in (4.6), (4.25) and (4.26) we obtain

(1—p)? if k=0;
2p(1—p) if k=1;
p? if k=2

0 elsewhere.

Pr[M = k] = (4.27)

4.1.2 Discrete Random Variables

The random variable, M, in Example 4.1.1 is an instance of a discrete random
variable.
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Definition 4.1.12 (Discrete Random Variable). A random variable, X, which
takes on a finite, or countable set of values, x1, xo, x3, ..., is said to be discrete.
The set of probability values

Py (z) =Pr[X =x;], fork=1,2,3,...

is called the probability mass function of X, or simply the probability distribu-
tion of X. Observe that

pr (zk) = 1. (428)
k=1

Example 4.1.13 (Continuation of Example 4.1.1.). The expression in (4.27)
is called the probability distribution of the random variable, M, defined in
Example 4.1.1. We therefore have that

1-p)? i k=0;
20 —p)p if k=1;
k) = 4.29
Pk =, - (1.29)
0 elsewhere.
Observe that )
> pu(k) = (1-p)?+2(1-p)p+p?
k=0
= [(1—p)+p?

= 1,

so that the function defined in (4.29) satisfies the condition (4.28) in the defini-
tion of a the distribution of a random variable (Definition 4.1.12).

Definition 4.1.14 (Bernoulli Trials). A random experiment with two mutually
exclusive outcomes, one called a “success” and the other a “failure,” is called
a Bernoulli trial. We associate a random variable, X, with a Bernoulli trial as
follows: X = 1, if the outcome is a success, and X = 0, if the outcome is a
failure. If the probability of a success is p, then then distribution of X is

1—p if k=0
pe(k)=4(p if k=1; (4.30)
0 elsewhere.

The random variable X is said to have a Bernoulli distribution with parameter
p. We write X ~ Bernoulli(p).

Example 4.1.15 (Continuation of Example 4.1.1.). The bacterial mutation
situation described in Example 4.1.1 may be modeled by using two Bernoulli
trials, X7 and X5, with parameter p, where p is the probability that a bacterium
will develop a mutation in the time interval [0,1]. Event A is then [X; = 1],
while event B is the event [Xo = 1].
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Definition 4.1.16 (Independent Discrete Random Variables). Two discrete
random variables, X and Y, are said to be stochastically independent if and
only if

Pr(X =a,Y =b) =Pr(X =a) -Pr(Y =b), (4.31)

for all values of a and b.

Example 4.1.17 (Continuation of Example 4.1.1.). If we assume that the
Bernoulli random variables, X; and Xs, postulated in Example 4.1.17 as a
model for the bacterial mutation situation described in Example 4.1.1, are also
stochastically independent, then events A = [X; = 1] and B = [X; = 1] are
independent by virtue of (4.31). We also see that the random variable M, the
number of mutations in one unit of time, in the two—bacteria culture, is given
by
M= X1+ Xo.

Thus, the calculations leading to (4.1.13) in Example 4.1.13 show that, if X;
and X5 are independent Bernoulli(p) random variables and Y = X; + X3, then
the random variable Y has the distribution function

(1—p)? if k=0;

21 —p)p if k=1;
k) = 4.32
p=1" o (4.32)
0 elsewhere.

4.1.3 The Binomial Distribution

Consider now three bacteria, labeled 1, 2 and 3, and ask the question: How
many mutations will there be in a unit of time? As we did in Example 4.1.17,
we may postulate three Bernoulli(p) random variables, X7, X2, and X3, where
p is the mutation rate. Thus, the event [X; = 1] is the event that bacterium ¢
will develop a mutation, for ¢ = 1,2,3. This time, in addition to assuming that
X1, X5 and X3 are pairwise independent, we also need to assume that

Pr(X; =a,Xo=b,X5=c¢) =Pr(X; =a) -Pr(Xy =0) - Pr(X3 = ¢),
for all values a, b and c¢. This is the concept of mutual independence.

Definition 4.1.18 (Mutual Independence). Three discrete random variables,
X1, X5 and X3, are said to be mutually independent if

Pr(X; =a,X; =b) =Pr(X; =a) -Pr(X; =0b), foriz#j, (4.33)

for all values of a and b; that is, X;, X5 and X3 are pairwise stochastically
independent, and

Pr(X; =a,Xo=0,X3=c¢) =Pr(X; =a) -Pr(Xy=0) -Pr(Xz =c¢), (4.34)

for all values of a, b and c.
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Lemma 4.1.19. Let X;, X5 and X3 be mutually independent, discrete ran-
dom wvariables and define Yo = X1 + Xo. Then, Yo and X3 are stochastically
independent.

Proof: Compute

PI‘(YQ = ’LU,X3 = Z) = PI‘(X1 + X2 = ’LU,X3 = Z)

ZPI‘(Xl =z, Xo=w—1x,X35=2),
xT

where the summation is taken over all possible values of X;. Thus, using (4.34)
in Definition 4.1.18,

Pr(Ya=w,X5=2) = ZPr(Xl =z) - Pr(Xo=w—2) Pr(X3 =2)

x

= (Z Pr(X;=2) Pr(Xo=w— m)) -Pr(Xs =z)

Hence, by pairwise independence, (see (4.33) in Definition 4.1.18),

Pr(Ya=w,Xs5=2) = (Z Pr(X;=uz,Xo=w— x)) -Pr(X5 = 2)

= Pr(Xi+ X2 =w) Pr(X3=2)
= Pr(Y2 =w) Pr(X;3=2),

which shows the independence of Y5 and X3. W

Example 4.1.20. Suppose X;, X5 and X3 be three mutually independent
Bernoulli random variables with parameter p, where 0 < p < 1. Define Y3 =
X1 + X5 + X3. Find the probability distribution for Yj.

Solution: Observe that Y3 takes on the values 0, 1, 2 and 3, and that

Yé:}/Q—"_XZSa

where the probability distribution for Y3 is given in (4.32).
We compute

T
=
&

I
£

I

Pr(Y2 =0,X3 =0)

Pr(Y; =0) - Pr(X3 = 0), by independence (Lemma 4.1.19),
= (1-p?-(1-p)

= (1-p°
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Next, since the event (Y3 = 1) consists of the disjoint union of the events
(}/2 == 17X3 = 0) and (Y2 = 0,X3 = 1)7

PY(Yg = 1) = r(Y2 = 1,X3 = 0) +PI(Y2 = 0 X3 = 1)
Pr(Ya=1) -Pr(X3=0)+Pr(Y2=0) -Pr(X3=1)
2p(1 = p)(1 —p) + (1 —p)*p

= 3p(1-p)?

where we have used Lemma 4.1.19 and the definition of the probability distri-
bution of Y5 in (4.32). Similarly,

PI‘(Yg = 2) = r(YQ =2 X3 = O) + PT(YQ =1 X3 = 1)
= P(Y2—2> r(Xs = 0) + Pr(Ys = 1) Pr(Xs = 1)
= p’(1-p)+2p(1—p)p
= 3p*(1-p),
and
PI‘(Y3 = 3) = PI’(YQ = 2,X3 = ].)
= PI‘(YQ == 0) . PI‘(X3 = O)
= p2 )
= p3.

We then have that the probability distribution of Y3 is given by

1-p? ifk=0,
3p(1 —p)? ifk=1,

Py, (k) = 3p*(1 —p) if k=2, (4.35)
3 if £ =3,
0 elsewhere.
O

If we go through the calculations in Examples 4.1.11 and 4.1.20 for the case of
four mutually independent? Bernoulli trials with parameter p, where 0 < p < 1,
X1, X5, X3 and X4, we obtain that for Y, = X7 + Xo + X3 + X4,

(1—-p)t if k=0,
ap(l1—p)3 ifk=1,
py, (k) = Gi(L-p)* iR =2, (4.36)
4p*(1—p) ifk=3,
p! ify =4,
0 elsewhere.

2Here, not only do we require that the random variable be pairwise independent, but also
that for any group of k > 2 events (X; = x;), the probability of their intersection is the
product of their probabilities.
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Observe that the terms in the expressions for p,, (y), py, (v) and py, (y) in (4.32),
(4.35) and (4.36), respectively, are the terms in the expansion of [(1 — p) + p|”
for n = 2,3 and 4, respectively. By the Binomial Expansion Theorem,

(@+b)"=>" (Z) a*v"*,  fora,beR,n €N, (4.37)
k=0
where |
n n.
= _ =0,1,2... 4.
() =g E=02m (4.38)

are the called the binomial coefficients, we obtain that
n - n k n—=k
(A—p)+p" =) <k>p (1-p)" "
k=0

This suggests that if
Yn:X1+X2++Xn7

where X1, Xo,..., X, are n mutually independent Bernoulli trials with param-
eter p, for 0 < p < 1, then

Py, (k) = (Z)pk(l —p)" 7k for k=0,1,2,...,n,

and p,. (k) = 0 elsewhere. In fact, this statement is true, and will be proved as
the following theorem. We shall establish this as a the following theorem:

Theorem 4.1.21. Assume that the random variables X1, Xo,..., X, are mu-
tually independent Bernoulli trials with parameter p, where 0 < p < 1. Define

Y,=X1+Xo4+---+ X,.
Then the probability distribution of Y7, is
(Z)pk(l —p)" 7k for k=0,1,2,...,n;
py, (k) = (4.39)
0 elsewhere.

Proof: We prove this result by induction on n.
For n = 1 we have that Y7 = X7, and therefore

Py, (0)=Pr(X; =0)=1-p

and
py, (1) =Pr(X1 =1) =p.

1—p ifk=0,
k =
P, (k) {p it k= 1.

Thus,
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1 1
Observe that (O) = (1) = 1 and therefore the result in (4.39) holds true for

n=1.
Next, assume the theorem is true for n; that is, suppose that

Py, (k) = (Z)pk(l —p)" % for k=0,1,2,...,n, (4.40)

and p, (k) = 0 elsewhere. We show then show that the result also holds true
for n + 1. In other words, we show that if Xy, Xo,..., X,, X;,+1 are mutually
independent Bernoulli trials with parameter p, with 0 < p < 1, and

Yoo =X1+Xo+ -+ X, + X1, (4.41)

then, the pmf of Y,, 11 is

pYn+1

1
(k) = (n—]: )pk(l_p)n—i_l_k fork=0,1,27...,n,n+17 (442)

and p, . (k) = 0 elsewhere.
From (4.41) we see that
Yn+1 = Yn + Xn+1a

where Y,, and X, ;1 are independent random variables, by an argument sim-
ilar to the one in the proof of Lemma 4.1.19 because the Xj’s are mutually
independent. Therefore, the following calculations are justified:

(i) for k<m,or k <n+1,

Pr(Yopi=k) = Pr(Yo=k Xp1 =0)+Pr(Yp=k—1,Xp11 =1)

Pr(Y, =k) - Pr(X,41 =0)
+ Pr(Y,=k-1) -Pr(X,-1=1)

n _
(})rra-mrra-p
n k—1 n—k+1
1—
+ ( L 1)p (1-p) 2
where we have used the inductive hypothesis (4.40). Thus,
n n
Pr(Yo11 =k) = + pr(1L—p)"Hih (4.43)
k E—1
The expression in (4.42) will following from (4.43) the fact that

(Z) i (kn 1) - ("Z 1)7 (1.44)

which can be established by the following counting argument:
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Imagine n + 1 balls in a bag, n of which are blue and one is
red. We consider the collection of all groups of k balls that can
be formed out of the n + 1 balls in the bag. This collection is
made up of two disjoint sub—collections: the ones with the red
ball and the ones without the red ball. The number of elements
in the collection with the one red ball is

Qfd)'@>‘<kﬁﬂ’ (4.45)

while the number of elements in the collection of groups without

the red ball are
n
. 4.46
(+) (4.46)

1
Adding the amounts in (4.45) and (4.46) must yield (n—]: >,
which proves (4.44).
Thus, combining (4.43) and (4.44), we obtain (4.42) for the case k < n+1.
(ii) If Kk = n + 1, then, using again the independence of Y;, and X, 41,
Pr(Yo1=%k) = Pr(Y,=nX,41=1)
= Pr(Y,=n) Pr(X,41=1)
= p'p

— anrl

n+1 nal_
(" Tk,

since k =n + 1, and so (4.42) is established for k =n + 1.

The proof is now complete. H

Definition 4.1.22 (Binomial Distribution). A discrete random variable, Y,
which counts the number of successes in n independent Bernoulli(p) trials, and
having the distribution

n! X - B
m?(lfp) for k=0,1,2,...,n,

pr(t)= (4.47)
0 elsewhere.

is called a binomial random variable with parameters n and p, where p is the
provability of each success. We write

Y ~ Binomial(n, p).
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Remark 4.1.23. Theorem 4.1.21 shows that a Binomial(n,p) distribution is
the sum of n independent Bernoulli(p) trials.

Example 4.1.24 (Bacterial Mutations). Consider a culture containing N bac-
teria. Let M denote the number of mutations in the culture that develop in the
culture in a unit of time. Then, assuming a mutation rate of p (the probability
that a given bacterium with develop a mutation in a unit of time), M can be
modeled by a binomial random variable with parameters N and p; that is, M
has a probability distribution given by (4.47), where n = N:

N
(3 )pra-pr ork=02
P (k) = (4.48)

0, elsewhere.

4.1.4 Expected Value

Definition 4.1.25 (Expected Value of a Discrete Random Variable). Given a
discrete random variable, X, with values z1,z2,...,z,, and distribution p,,
the weighted average of the values of X,

1P (71) + Tapy (T2) + -+ + Tup i (T0),

is called the expected value of X and is denoted by E(X). We then have that
E(X) =) xpy(zr) (4.49)
k=1
Example 4.1.26 (Expected Value of a Bernoulli Trial). Let X be a Bernoulli
random variable with parameter p. Then, the expected value of X is
E(X):O'px(0)+1'px(1):p~ (450)
Example 4.1.27 (Expected Value of a Binomial Random Variable). Let
X17X27”' 7X'n

denote n independent Bernoulli trials with parameter p, and put Y = X7+ Xo+
-+++ X,,. Then, using the result of Problem 1 in Assignment #7, we have that

EY)=E(X))+ E(X2)+ -+ E(X,) =np,

where we have used (4.50). Thus, the expected value of a binomial random
variable, Y, with parameters n and p is

E(Y) = np. (4.51)
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Alternatively, we could have used the definition of p, in (4.47) and the
formula for the expected value in (4.49) to get
" n!
E(Y — k 1— n—k

Next, make the change of variables m = k — 1 in (4.52) to get

E(Y) — z_: m'&(i_l l_)Ln)' pm+1(1 _p)nflfm

(4.53)

n—1
-1
np - E (nm ) pm(l _p)n—l—m
m=0

Thus, applying the formula for the binomial theorem in (4.37) for n— 1 in place
of n and a = p, b =1 — p, we obtain from the result in (4.53) that

EY) = np-(p+1-p)" ",

which yields (4.51).

4.1.5 The Poisson Distribution

We have seen that, if Y ~ Binomial(n, p), then Y, has a probability distribution
given by

n! k —k
1—p)" for k=0,1,2,...
k!(n _ ]{/’)! p ( p) or 07 ) ) 7n7
Py, (k) = (4.54)

0 elsewhere,

and the expected value of Y,, is given by
E(Y,) =np, forall n. (4.55)

In this section we explore what happens to the distribution of Y,, as n — oo,
while E(Y},) is kept at a constant value, A. In other words, we would like explore
the limit

lim p, (k) while np=2X, foralln, (4.56)

n—roo

where ) is a constant.
Note that from

we get that
=—. 4.57
b= ( )
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It follows from (4.57) that
p—0 as n— oo,

so that the limiting setting described in (4.56) is relevant in modeling situations
in which there are large number of independent trials with a very small proba-
bility of success. This is precisely the situation of a bacterial culture of size NV
in the order of millions, and mutation rates typically of the order of 10~8. Thus,
the limiting distribution in (4.56), if it exists, can be used too approximate the
distribution of mutations in a large colony of bacteria when the mutation rate
is very small.
Fix k in (4.54). Then, for n > k we may write

n! k nok
Py, (k) = M % (1 - 2) ; (4.58)

A
where we have used (4.57) to replace p by — Next, rewrite (4.58) as

pe () = %’:n(n—l)(n—i)k...(n—k+1) (1_2)k <1_A>n7

which can in turn be rewritten as

py, (k) = %T <1 - 711) (1< fL)/\)k(l _ kgl) (1 = A>n. (4.59)
1-2

Now, since k and A are fixed,

L s

lim —
k
n— o0 )\
n

Next, use the well-known limit

lim (1 + g)n =e", for all z € R, (4.61)
n— 00 n
to obtain that o
lim <1 - > =e M (4.62)
n—o00 n

Thus, using the limits in (4.62) and (4.60), we obtain from (4.59) that

/\lc
lim p, (k)= -+ e .

n— 00 Tk

(4.63)
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The limit expression in (4.63) shows that the sequence of random variables
R A
Y, ~ Binomial (n,— |, forn=1,2,3,...,
n
has a limiting distribution given by
py(k):ge , fork=0,1,2,3,... (4.64)

To see that the expression in (4.64) does indeed define a probability distribution
observe that

D p(k) = D e
k=0 k=0
(4.65)
oo
/\k
Y
= )
k=0
Thus, using the well known series expansion result
> g=c¢ forallzeR, (4.66)
k=0
we obtain from (4.65) that
Zpy(k) = et =1
k=0

Note that the expressions in (4.61) and (4.66) are well known realizations of
the exponential function x +— e*.

Definition 4.1.28 (Poisson Distribution). A discrete random variable, Y, with
possible values k£ = 0,1,2,..., is said to have a Poisson distribution with pa-
rameter A, if

)\k
ﬁe*A for k=0,1,2,...;

py(k) =19 (4.67)
0 elsewhere.

We write
Y ~ Poisson(A).

Example 4.1.29 (Expected Value of the Poisson Distribution). Let ¥ ~
Poisson(A). Compute E(Y).

Solution: Since Y takes on a countable number of values, the expected
value of Y is given by the series

E(Y)=>_ mp,(m), (4.68)
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where p, is given in (4.67). Thus, noting that the first term in the series in
(4.68) is zero, we obtain from (4.68) and (4.67) that

o0 )\m
EY) = Z m- —‘e*)‘
= m!
(4.69)
o0 )\m
_ - Z
= e —
= (m—1)!
Next, make the change of variables k = m — 1 in (4.69) to obtain
& Metl
A
E(Y) = e*) o
k=0
AR
-2
=
k=0
so that
EY) = xe? s\
(V) = re> (4.70)
k=0

Finally, use the series expansion for e* in (4.66) to obtain from (4.70) that

E(Y)=Xe e =\

Thus, we have shown that
Y ~ Poisson(A\) = E(Y) = A; (4.71)

in other words, the expected value of a Poisson random variable with parameter
A is A. Tt is possible to show that the variance, Var(Y') of Y ~ Poisson()) is
also \; where,

Var(Y) = E(Y?) — [E(Y))%.

4.1.6 Estimating Mutation Rates in Bacterial Populations

In the early 1940s, Luria and Delbriick [LD43] devised the following procedure
(known as the fluctuation test) to estimate the mutation rate, p, for certain
bacteria:

Imagine that you start with a single normal bacterium (with no mutations)
and allow it to grow to produce several bacteria. Place each of these bacteria
in test—tubes each with a medium conducive to growth. Suppose the bacteria
in the test—tubes are allowed to reproduce for n division cycles. After the
nt™ division cycle, the content of each test-tube is placed onto a agar plate
containing a virus population which is lethal to the bacteria which have not
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developed resistance. Those bacteria which have mutated into resistant strains
will continue to replicate, while those that are sensitive to the virus will die.
After certain time, the resistant bacteria will develop visible colonies on the
plates. The number of these colonies will then correspond to the number of
resistant cells in each test tube at the time they were exposed to the virus. This
number corresponds to the number of bacteria in the colony that developed a
mutation which led to resistance. We denote this number by Yy, where N is
the size of the colony after the n'" division cycle. Assuming that the bacteria
may develop mutation to resistance after exposure to the virus, if N is very
large, according to the result in Section 4.1.5, the distribution of Yy can be
approximated by a Poisson distribution with parameter A = p/N, where p is the
mutation rate and N is the size of the colony. It then follows that the probability
of no mutations occurring in one division cycle is

Pr(Yy =0) =~ e, (4.72)

according to (4.67). This probability can also be estimated experimentally as
Luria and nd Delbriick showed in their 1943 paper. In one of the experiments
described in that paper, out of 87 cultures of 2.4 x 10® bacteria, 29 showed not
resistant bacteria (i.e., none of the bacteria in the culture mutated to resistance
and therefore all perished after exposure to the virus). We therefore have that

29
~ o
Comparing this to the expression in Equation (4.72), we obtain that
A o 29
87’

PI‘(YN = 0)

e

which can be solved for \ to obtain

29
A~ —In[—
(%)

or
A~ 1.12.
The mutation rate, p, can then be estimated from A = pN:
A 1.12
= " ~47x1070.
P=N T 21x10°8

4.1.7 Another Brief Excursion into Probability
We have seen that, if A and B are independent events, then
Pr(An B) =Pr(A) - Pr(B); (4.73)

in other words, the probability of the joint occurrence of two independent events
is the product of there probabilities. In many situations, however, the occurrence
of an event will have an effect on the probability of the occurrence o the other
event. Here is a simple example that illustrates how this can happen.
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Example 4.1.30. Put four marbles in a bag. Two of the marbles are red and
the other two are blue. Pick two marbles at random and without replacement.
Labeling the marbles Ry, R2, By and By, for the two red marbles and the two
blue marbles, respectively, we see that the sample space for the experiment (the
set of all possible outcomes of the experiment) can be written as

C ={R1R2,R1B1,R1B2,R2B1, RaBs, B1Bs}.

The assumption of randomness in the picking of the two marbles implies that
each of the outcomes in C is equally likely; so that

1
Pr(c) = 6’ for all c € C. (4.74)

Let A denote the event that at least one of the marbles is red and B denote
the event that the two marbles have the same color; then,

A={RiRy,R1B1,R1 B2, Ry By, Ry B>},
so that, in view of (4.74),
Pr(A) = 2. (4.75)

Similarly, since
B ={RiRs, B1 B2},

it follows from (4.74) that Then,
Pr(B)=- = -. (4.76)

On the other hand, since
ANB= {RlRQ},

that is, the joint event A N B is the event that both marbles are red,

1
Pr(ANB) = G (4.77)
It follows from (4.75) and (4.76) that
5 1 )
Pr(A) -Pr(B)=>.-="2. 4.
H(4) Pr(B)= 21 =2 (4.78)
Comparing (4.77) and (4.78) we see that (4.73) does not hold true in this ex-

ample. Thus, A and B are not stochastically independent.

Definition 4.1.31 (Conditional Probability). Given two events, A and B, with
Pr(B) > 0, we define the conditional probability of A given B, denoted Pr(A |
B), by

Pr(ANn B)

PH(A|B) = =5

(4.79)
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Similarly, if Pr(A4) > 0, he conditional probability of B given A, denoted Pr(B |
A), by

Pr(An B)
Pr(B|A) = ————= 4.
(5] 4) = T (1.50)
Remark 4.1.32. It follows from (4.80) that, if Pr(A) > 0, then
Pr(An B) =Pr(A) - Pr(B | A); (4.81)

thus, by introducing the concept of conditional probability, in some sense we
recover (4.73), which, as seen in Example 4.1.30, does not hold in general.
Observe that (4.81) holds true for all events A and B such that Pr(A) > 0.

Proposition 4.1.33. Assume that Pr(A4) > 0 and Pr(B) > 0. Then, events A
and B are independent if and only if

Pr(A| B) =Pr(A), and Pr(B|A)=Pr(B). (4.82)

Proof: Assume that A and B are independent. Then, (4.73) holds true. Since
Pr(B) > 0, it follows from (4.73) and (4.79) that
Pr(AnB) Pr(A)-Pr(B)

Pr(A|B) = Pr(B) = Pr(B) = Pr(4).

Similarly, since Pr(A) > 0, it follows from (4.73) and (4.80) that
Pr(B | A) = Pr(B).

Thus, (4.82) holds true if A and B are independent.
Conversely, suppose that (4.82) holds true. It then follows from (4.81) that

Pr(ANB) =Pr(A)-Pr(B| A) =Pr(4) - Pr(B),
which shows that A and B are independent. MW

Proposition 4.1.34 (Properties of Conditional Probabilities). Let the symbols
A, B, E1, F,, ..., E, denote subsets of a sample space C on which a probability
function, Pr, is defined.

1. If Pr(B) > 0, then Pr(A° | B) = 1 — Pr(A | B).

2. (Law of Total Probability). Suppose Ei, Es, Es, ..., E, are mutually ex-
clusive such that P(E;) > 0 for i =1,2,3....,n, and

k=1
Then,
P(B)= " P(E)-P(B| By (48)

k=1
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4.1.8 Continuous Random Variables

We begin with an example regarding modeling the time, T', that people spend at
a check—out counter in a supermarket, for instance. In this case, T is a random
variable that can take on a continuum of values; that is, any real value within
an interval of real numbers; more specifically, in this case, T' could take on any
value in the interval (0,00). Thus, T is an example of a continuous random
variable.

For a continuous random variable, T, we are interested in its probability
density function, f,., or pdf. Once the pdf is known, we can compute the
probability that T" will take on a certain range of values by integration; for
example,

Pr(a < T <b) = / ") dn (4.84)

It the next example, we model the service time 7' and show how to compute fr
by first computing the cumulative distribution function, F,., defined by

F.(t)=Pr(T <t), forallteR. (4.85)

It follows from (4.84) and (4.85) that

t
F.(t) = / fp(r) dr, forallteR,
— 00
so that, by the Fundamental Theorem of Calculus,

fo(t) = FL.(1), (4.86)
for values of ¢ at which f, is continuous.

Example 4.1.35 (Service time at a checkout counter). Suppose you sit by a
checkout counter at a supermarket and measure the time, T, it takes for each
customer to be served. This is a continuous random variable that takes on values
in a time continuum. We would like to compute the cumulative distribution
function given by (4.85), F,.(t) = Pr(T < t), for t > 0.

Let N(t) denote the number of customers being served at a checkout counter
(not in line) at time ¢, and assume that either N(t) = 1 or N(¢) = 0; in other
words, N (t) is a Bernoulli random variable for each ¢. Here, we are also assuming
that, once service is completed, no new costumer will walk up to the checkout
counter.

Set

p(t) =Pr[N(t) =1], fort=0, (4.87)

and assume that p(0) = 1; that is, at the start of the observation, one person is
being served.

We consider what happens to the probability p(¢) for ¢ in a short time interval
[t,t 4+ At]. We would like to estimate p(t + At), where At is very small; i.e., the
probability that a person is being served at time t + At.
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We assume that the the probability that service will be completed in the
short time interval [t,t + At] is proportional to At; say uAt, where p > 0
is a proportionality constant. Then, the probability that service will not be
completed at ¢+ At is 1 — pAt. This situation is illustrated in the state diagram
pictured in Figure 4.1.1: The circles in the state diagram represent the possible

1— pAt

()

~—~
At

Figure 4.1.1: State diagram for N (t)

values of N(t), or states. In this case, the states are 1 or 0, corresponding to
one person being served and no person being served, respectively. The arrows
represent transition probabilities from one state to another (or the same) in the
interval from ¢ to t + At¢. Thus the probability of going from sate N(t) = 1 to
state N(t) = 0 in that interval (that is, service is completed) is approximately
1At, while the probability that the person will still be at the counter at the end
of the interval is 1 — pAt.
By the law of total probability in (4.83),

Pr(N(t+At)=1) = Pr(N(t)=1)-Pr(N(t+At)=1| N(t) = 1)
HPr(N(t) = 0) - Pr(N(t + At) = 1| N(¢) = 0),

where Pr(N(t + At) = 1 | N(t) = 1) is the probability that service is not
completed in the time interval [t,t + At]; so that

Pr(N(t+At)=1|N({) =1) = 1 — pAt,
by the previous consideration. We can therefore write
pt+ AL ~ pt)(1—pAt)
(4.88)
+(1—=p@)) -Pr(N({t+ At)=1| N(t) =0),
Since we are also assuming that

Pr(N(t+At) =1 | N(t) = 0) =0,

for At small enough (see also the diagram in Figure 4.1.1), we therefore get
from (4.88) that
p(t + At) = p(t)(1 — pAt),
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p(t + At) — p(t) = —pAt. (4.89)

Dividing both sides of (4.89) by At # 0 and taking the limit as At — 0 we
obtain that

It follows from (4.90) that p is differentiable and satisfies the differential equa-
tion.

% = —up(t). (4.91)

The first order differential equation in (4.91) can be solved subject to the initial
condition p(0) = 1 to yield

p(t)=e*,  fort>0. (4.92)

Recall that T denotes the time it takes for service to be completed, or the
service time at the checkout counter. Thus, it is the case that

Pr[T >t] = Pr[N()=1], fort=0; (4.93)

that is, T' > ¢ if and only if at time ¢ the person is still at the checkout counter.
It follows from (4.93) and (4.87) that

PriT >t] = p(t), fort>0,
which can be written as
Pr[T >t = e #, fort=0,
in view of (4.92). We then get that
PriT <t]=1-Pr[T>tj=1—e#  fort>0,

so that the cumulative distribution function (cdf) of T is

1—e H  fort>0;
F,(t) = ot (4.94)
0 for t <O0.

A portion of the graph of this cumulative distribution function is shown in
Figure 4.1.2.

It follows from (4.86) and (4.94) that the probability density function for
the service time, T, is given by

pe . fort > 0;
t) = 4.95
f2 (?) {0 for t < 0. ( )
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1.0
0.75
0.5

0.25

OO T TTT [T TTT [T TTT[TTTT[TTTT]
o 1 2 3 4 5
x

Figure 4.1.2: Cumulative Distribution Function of T" for t > 0

To see that the function in (4.95) indeed defines a probability density func-
tion, compute

oo b
/ fr@)dt = lim [ pe M dt, (4.96)
— 00 b—oo J
where .
/ Me_#t = [—e_#t}g =1 e_p‘b (497)
0
It follows from (4.97) and (4.96) that
/ fr(t)dt = lim[1— e M =1, (4.98)

since p > 0.

Definition 4.1.36 (Probability Density Function). An integrable function,
f: R — R, is said to be a probability density function if

(i) f(xz) >0 for all z € R, and

(i) /Z f(z) do = 1.

Remark 4.1.37. It follows from (4.98) in Example 4.1.35 that the function
[ defined in (4.95) is a probability density function. We say that f,. is the
probability density function of the random variable T

Definition 4.1.38 (Cumulative Distribution Function). Let X be a random
variable with probability density function f,. Then, for any real numbers, a
and b, with a < b;

Prja < X < :/bfx(x) dx.

The function, F, : R — R, defined by

F (z)=Pr[X <z|= / fi(t) dt, forall x € R,
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is called the cumulative distribution function of X.

Remark 4.1.39. The function F, defined in (4.94) in Example 4.1.35 is the
cumulative distribution function of the service time T .

Definition 4.1.40 (Expected Value of a Continuous Random Variable). Let
X be a continuous random variable with probability density function f,. If

|l de <o,

we define the expected value of X, denoted E(X), by

E(X)= /00 zf(z) da.

— 00

Example 4.1.41 (Average Service Time). In the service time example, Exam-
ple 4.1.35, we showed that the time, T, that it takes for service to be completed
at a checkout counter has an exponential distribution with probability density
function given in (4.95),

pe™Ht for t > 0,
t) = 4.99
J=(®) {0 otherwise, ( )

where p is a positive parameter. Note that for the expression in (4.99) to make
sense, the parameter p has to have units of 1/time.
Observe that

/ [t|f.(t) dt = / tue Mt dt
—o0 0

b
= lim t pe M dt

b—o0 J

1 b
= lim {—te_“t — e_“t}
b— oo 0

1 1
= lim { — bhe M — e“b}
b—o0 12 1%

1

)

1

where we have used integration by parts and L’Hospital’s rule. It then follows
that

/_O:o|t|fT(t) dt:i<oo
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and therefore the expected value of T' exists and

E(T) = /OO tf.(t) dt = /Ooo tue Mt dt = i

Thus, the parameter u is the reciprocal of the expected service time, or average
service time, at the checkout counter.

Example 4.1.42. Suppose the average service time, or mean service time,
at a checkout counter is 5 minutes. Compute the probability that a given person
will spend at least 6 minutes at the checkout counter.

Solution: By the result of Example 4.1.35, we assume that the service time,
T, has a probability density function given in (4.95) with p = 1/5. We then
have that

oo oo 1
Pr(T > 6) = / [ (t) dt = / ge*t/S dt = e75/5 %~ 0.30.
6 6

Thus, there is a 30% chance that a person will spend 6 minutes or more at the
checkout counter. O

Definition 4.1.43 (Exponential Distribution). A continuous random variable,
X, is said to be exponentially distributed with parameter 5 > 0, written

X ~ Exponential(3),

if it has a probability density function given by

1
3 e ®/B for x>0,
fx(x) =

0 otherwise.

The expected value of X ~ Exponential(3), for 5 > 0, is E(X) = 3.

4.2 Random Processes

In this section we come back to the problem of determining the distribution of
the number of mutations of a certain type that occur in a bacterial colony. We
analyzed this problem in Section 4.1 by considering the limit of Binomial(V, p)
distributions when N is very large while Np = X is a constant. This approach
led to a Poisson()) distribution. Here we take into account the fact that the
bacterial population size is changing with time, ¢. Accordingly, we define M ()
to be the number of mutations of a certain type that occur in the time interval
[0,¢t], for t > 0. Note that, for each ¢, M(t) is a random variable that can take
on any of the values
0,1,2,3,....
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We are interested in computing the probability that M (¢) attains each of those
values for each time ¢. In symbols, we would like to compute

Pr[M(t) = m] form=0,1,3,... andt¢>0.

We shall denote Pr[M(t) = m] by P, (t).
We would like to compute P, (¢), for each m =1,2,3,... and ¢t > 0, under
the following assumptions:

(i) each P, is a differentiable function of ¢, for m =0,1,2,..;

(ii) Py(0) = Pr[M(0) = 0] = 1; that is, initially no bacterium has mutated
into a strain of the particular type under study. It then follows that

P,(0)=0, form>1,; (4.100)

(iii) the probability that any bacterium develops a mutation in a short time
interval [t,t + At] depends only on At and not on the number of mutant
bacteria at previous times;

(iv) the probability of a new mutation in the short interval [¢,t 4+ At] is pro-
portional to At; in symbols

Pr(new mutation in [¢,t + At]) &= AAt,

where A > 0 is a constant of proportionality;

(v) At is so small that the probability of two or more mutations occurring in
the short time interval [¢,t + At] is zero.

In order to determine P,,(t) for each m = 1,2,3,... and ¢ > 0, first we
estimate P,,(t + At) for At very small. Thus, we need to model the process of
going from time ¢ to the time ¢t + At. As in Example 4.1.35, examination of a
state diagram for M (¢) can be used to aid us in this process. The state diagram
is pictured in Figure 4.1.1. Each of the circles in the state diagram represents
the number of mutations at any given stage.

1 — AAt 1 — AAt 1 — AAt 1 — AAt 1 — AAt

oo 0 O 0O
@)\At®)\At@>\At@)\At@W...

Figure 4.2.3: State diagram for M ()

The arrows in Figure 4.2.3 indicate the transition probabilities of going from
one state to the next, or those of remaining in the same state, in a short time
interval [t,t 4+ At]. For instance, if at time ¢ there are no mutants in the colony
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(i.e., the system is in state 0 at that time), then at time ¢ + At there might a
bacterium that has developed a mutation. The system would then go from state
0 to state 1 in the time interval [¢,¢ + At]; the probability of this occurrence
is approximately AA¢ by assumption (iii); this is indicated by the arrow in the
diagram that goes from state 0 to state 1. On the other hand, there might
not be a new mutation in the time interval [t,¢ 4+ At]; the probability of this
occurring is approximately 1 — AAt (why?), and this is shown by the arrow that
starts at state 0 and which winds back again to 0. Observe that assumption (iv)
is implicit in the state diagram in Figure 4.2.3 since the states can only increase
by 1 and not by 2 or more; thus, arrows from a given state either return to that
state or go to the next one.

The state diagram in Figure 4.2.3 can be used to estimate P,,(t + At), given
that we know P,,(t), for very small values of At. We start out with the case
m = 0 as follows:

Py(t + At) = Py(t) - Pr(no new mutations in [¢,¢ + At] | M(t) = 0).
Using assumption (ii) we have
Py(t + At) = Py(t) - P(no new mutations in [¢,¢ + At]), (4.101)

since
Pr(no new mutations in [¢,t + At] | M(t) = 0)

is the same as
Pr(no new mutations in [t, ¢t + At]),

by virtue stochastic independence. It then follows from (4.101) and assumption
(iif) that
Py(t+ At) = Py(t) - (1 — AAL),

Rearranging equation (4.102) and dividing by At ), we obtain
Py(t + At) — Py(t)

~ —APy(t). 4.103
) 0 (4.10)
Next, let At — 0 in (4.103) to conclude that Py(t) is differentiable and
dPy
— = = \Fp; 4.104
dt 05 ( )

that is, Py(t) satisfies a first order differential equation. The differential equation
in (4.104) can be solved by separation of variables to yield

Py(t) = Ce ™, (4.105)

for some constant C. Since Py(0) = 1 by assumption (i), it follows that C' =1
in (4.105), and so the probability of no mutations in the colony at time ¢ is given
by

Py(t) =e M, fort>0. (4.106)
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We next proceed to compute P;(t). Using the state diagram in Figure 4.2.3
we obtain that

Pt + At) ~ Py(t) - MAt + Py(t) - (1 — AA®), (4.107)

since, according to the state diagram in Figure 4.2.3, the system can get to
state 1 at t + At via two routes: (i) from state 0 through a new mutation
which occurs with probability AA¢, approximately, or (ii) from state 1 if no new
mutation occurs in the time interval [¢, ¢+ At], and the approximate probability
of this occurrence is 1 — AAt. Here we have also used the law of total probability
in (4.83) and the independence assumption (ii).

Rearranging equation (4.107) and dividing by At # 0, we obtain

Pi(t+ At) — Pi(t)
At

Next, let At — 0 in (4.108) to conclude that P; is differentiable and satisfies
the differential equation

~ —APL(t) + APy (1) (4.108)

dpPy
— = —-AP, + AFy(t
o7 1+ APo(t)
or, using (4.106),
dP,
dTl = AP, + e, (4.109)

The differential equation (4.109) can be solved as follows: Rewrite the equa-
tion as

dP,
dTl + AP = e M (4.110)
and multiply both sides of (4.110) by e** to get
dPp,
e”d—tl + MNP = A (4.111)
Observe that, by the Product Rule,
Y A dPr At
LeMp) =eMEL L eMp
@ D)=t AR
and so the differential equation in (4.111) reduces to
i(e”P Y= (4.112)
e TV '

The equation in (4.112) can be integrated to yield
eMP =Mt +C,
for some arbitrary constant C, and therefore

Py(t) = M e M 4 Ce (4.113)
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fort > 0.
Next, use the initial condition P;(0) = 0 in (4.100), which follows from
assumption (i), to get that C' = 0, and therefore

Pi(t)=Xe ™M fort>0 (4.114)

In order to compute Py(t), we proceed in a way similar to that used to
compute Pj(t). From the state diagram in Figure (4.2.3) we get that

Py(t+ At) = Pi(t) - AAE+ Py(t) - (1 — AAL),

from which we are led to the differential equation

APy
— = =-APy+ AP (¢t
ar > + APy (1)
or, using (4.114),
dpPs _ 2, —At
= AP+ N, (4.115)

We can solve this differential equation as we solved (4.115), by first rearranging
and multiplying by e* to get

dP
e”d—; + AeMPy = N2, (4.116)

and then re-writing the left-hand side of (4.116), so that

%(e”PQ) = \t. (4.117)

Next, integrate the equation in (4.117) and use the initial condition P»(0) = 0
in (4.100) to get
(A

5 € for t > 0. (4.118)

One can go through the same procedure leading to (4.118) to obtain the
formula

Py(t) =

0
Pg(t) = 31 e At
for P3(t), and this suggests the general formula for P, (¢t), m =0,1,2,..., to be
At)™

P(t) = %e*”, for t > 0. (4.119)
We will establish the formula in (4.119) by induction on m. Observe that we
have already established the basic case m = 0 in (4.106). Next, for the inductive
step, assume that the formula (4.119) holds for m, and we seek to show that it
also holds for m + 1. Using the state diagram 4.2.3 we see that

Prg1(t+ At) & Po(t) - AL+ Poyy (£) - (1 — AAD),
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from which we are led to the differential equation

d
%(Pnz-&-l) = 7/\Pm+1 + )\Pm(t)

or, using the inductive hypothesis (4.119),

d (Prg1) = —APpgy + AT (4.120)
—(Pmt1) = —APy, —e .

g mt +1 -

We can solve the differential equation in (4.120) as we solved (4.115); that is,
first rearrange the equation and multiply by e* to get

e”i(P Y+ XeMP g = A (4.121)
dt m—+1 m+1 — m' ) .
then, re—write the left—hand side of the equation in (4.121) to get

Y AL

Integrating (4.122) and using the initial condition P,,+1(0) = 0 in (4.100), we

obtain
()™
(m+1)! ¢
for all t > 0, since (m+1)! = (m+1)m!. This establishes the formula (4.119) for
the case m+1, and therefore formula (4.119) is now proved for allm = 0,1,2,. ..
by induction on m.

Note that the formula in (4.119),

Pm-&-l (t) =

(A)™ Y
m!

P,(t) = , form=0,1,2,3,... and t > 0, (4.123)
is the probability distribution of a Poisson(At) random variable. We have there-
fore demonstrated that assumptions (i)—(v) imply that, for each ¢t > 0, M(¢) is
a Poisson random variable with parameter At,

M(t) ~ Poisson(At), fort > 0. (4.124)

We say that M (¢) is a Poisson random process. This particular random process
is characterized by the assumptions (i)—(v) that we made on M (t).

In general, a random process is a collection, {X(¢) | t € Z}, of random
variables, X (t), for ¢ in some indexing set Z. If Z is countable, for instance,
Z = Nor Z = Z, the random process {X(t) | t € I} is called a discrete-time
random process. If 7 is some interval of real numbers, then {X(¢) | t € Z} is
called a continuous—time random process. For the case of the Poisson random
process defined in (4.123), Z = [0, 00). Therefore, the Poisson random process
is a continuous-time random process.
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Given a random process, {X (¢) | ¢ € Z}, the mean of the random process is
given by
E[X(t)], fortel.

It follows from (4.124), or (4.123), and the calculations in Section 4.1.5 that
E[M(t)] = At, fort>0. (4.125)

Thus, assumptions (i)—(v) imply that the expected number of mutations in the
interval [0, ¢] is proportional to the length of the time interval. The constant of
proportionality, A, represents the average number of mutations per unit time.
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Chapter 5

Diffusion

In this chapter we present another example of a random process: the random
migration of small particles (e.g., pollen grains, large molecules, etc.) immersed
in a fluid. This migration, known as Brownian motion, is caused by the ran-
dom bombardment of the particles by the fluid molecules because of thermal
excitation. We would like to model this phenomenon.

Let X; denote the location at time ¢ of a particle undergoing Brownian
motion. In general, X; represents a point in some region of three dimensional
space, the region where the fluid lies. We will assume that at time ¢ = 0 the
particle is at the origin of R3; that is, Xy = 0, the zero vector in R3. Note
that X; must be modeled by a random variable; in fact, X; is a continuous
random variable indexed by a continuous variable, t. Thus, we will be primarily
interested in determining the probability density function, p(x,t), of X; for all

t > 0, so that
Pr[X; € R] = /// p(z,t) dx
R

gives the probability that the particle will be in region R C R? at time t. We
will see in subsequent sections that the probability density function, p(z,t), for
the location of a Brownian particle satisfies the diffusion equation

2 2 2
r=D(5E5mtom)- 6.)
ot Oxy Oz5 Oxj

where D is called the diffusion coefficient of the medium in units of length
squared per unit of time. The equation in (5.1) was derived by Einstein in 1905
to explain the erratic motion of pollen grains in water observed by the botanist
Robert Brown in 1827.

In one dimension, the diffusion equation in (5.1) becomes

dp 0%p

7
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which has the same form as the equation for one-dimensional heat flow,

ou Kk 0%u

ot cpdx?’

derived in Assignment #4, for the case in which the conductivity, k, specific
heat, ¢, and density, p, of the material making up the rod are constant.

In this chapter, we derive the one—dimensional diffusion equation in (5.2) by
first introducing a discrete random process, X,,, known as a random walk, and
then applying a special kind of limiting process.

5.1 One—Dimensional Random Walk

Assume that N particle are constrained to move along the x—axis and that at
time ¢t = 0 the particles are located at z = 0. Suppose that each particle moves
either to the right or to the left, with probability 1/2 in each case, in discrete
steps n =1,2,3,.... Assume that the motion in each step has a duration of T,
and that at each time step the particle travels a distanced > 0.

For each step, n, and each particle, i, define the Bernoulli random variable,
Si(n), with values 1 or —1 and probability mass function

if k=-1,;
P, (k) = % if k=1; (5:3)

0  elsewhere.

We will also assume that the random variables S;(n) are independent for all
1t =1,2,...,N and all n = 1,2,3,... This models the fact that the particles
have no memory of where they were in previous steps; furthermore, the prior
history of the motion does not determine whether the particle will move to
the right or to the left. The independence of the S;(n), for ¢ = 1,2,..., N
and n = 1,2,3, ..., also incorporates the assumption that the particles do not
interact with one another. This last assumption is justified when the particles
are not too close to one another.
It follows from (5.3) that, for each n =1,2,3,... and i =1,2,..., N,

1 1
BISi(n)] = (~1)5 + (1) =0,
so that
E[S;(n)]=0, fori=1,2,...,N, andn=1,2,3,... (5.4)
Similarly,
1 1
B{(Sm)) = (~1°5 + ()73 =1,
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so that
E[(Si(n))* =1, fori=1,2,...,N, andn=1,2,3,... (5.5)

It follows from (5.4) and (5.5) that the variance of S;(n), for n = 1,2,3,... and
i=1,2,... k, is

Var(Si(n)) = E[(Si(n))*] = (E[Si(n)])* =1,
so that
Var(S;(n)) =1, fori=1,2,...,N, andn=1,2,3,... (5.6)

Let X;(n) denote the location of the ;th particle at the nth step. We then
have that each X;(n) is a random variable satisfying the recurrence relation

Xi(n) =X;(n—=1)4+6S;(n), forn=1,2,3,..., (5.7)

where
X;(0)=0 fori=1,2,3,...,N. (5.8)

The system of difference equations in (5.7), together with the initial condition
in (5.8), yields
Xi(n)=6Y Si(k), forn=1,23,..., andi=12,...N. (5.9)
k=1
It follows from (5.4) and (5.9) that the expected value of each each X;(n) is

E[Xi(n)] =6 > E[Si(k)] =0,
k=1

so that
E[X;(n)]=0, forn=1,23,...,andi=1,2,...,N. (5.10)

It also follows from (5.6), (5.9) and the independence of the S;(n) that
Var[X;(n)] = 6° ZVar[S’i(k)] = 6’n,
k=1

so that
E[(Xi(n))*] =6%n, forn=1,2,3,..., andi=1,2,...,N. (5.11)

We are also interested in the average location of all the particles,

1 N
(X(n)) = 2_Xiln), (5.12)
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at the nth step in the process.
It follows from (5.10) and (5.12) that

E[{(X(n))] = 0; (5.13)

in other words, on average, the particles do not go anywhere. However, we will
see that, on average, the square of the distance from the origin,

(X)) =+ > (Xi(n))?, (5.14)

i=1

increases with each step. To see why the last claim is true, use (5.14) and (5.11)
to get
Bl{(X(n)?)] = &n. (5.15)

Thus, the root—-mean—square displacement of the particles is proportional to
V/n; in fact,
E[{((X(n))?)] =6yn, forn=1,23,... (5.16)

Thus, the spreading of the particles from the origin is proportional to the square—
root of n.

5.2 One—Dimensional Brownian Motion

Our goal in this section is to obtain the probability distribution of the position
of a particle undergoing Brownian as a function of time ¢, which is a continuous
variable. Let X (¢) denote the position of this particle along the z—axis at time
t, given that X(0) = 0. Let p(z,t) denote the probability density function of
X (t); so that the probability that the particle will be in the interval (a,b] at
time ¢ is given by

b
Pria < X(t) < b = / p(a,t) da. (5.17)

We would like to obtain a formula for p(x,t) in (5.17). We will also show
that p(z,t) satisfies the Einstein diffusion equation in (5.2) for some diffusion
coefficient, D. In order to do this, we will approximate X (¢) by a sequence of
random walks of the nature described in Section 5.1, where the number of steps,
n, is obtained by the relation

n=-, (5.18)
where 7 is a small duration of time. Alternatively, we think of ¢ as an integral
multiple of the time 7. At each step, the particle moves to the right or to the
left a small distance 0 with probability 1/2 in each case. We then get a sequence
of discrete random variables X,,(t), for fixed ¢, given by the same formula in
(5.8); thus,

Xn(t) =) 4Sk, forn=1,23,..., (5.19)
k=1
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where the Sy are independent, identically distributed random variables with
probability distribution given in (5.3). Note that each of the summands in
(5.19) is a random variable with mean 0 and variance

Var(0Sg) = 6% (5.20)
so that, by the independence of the Si’s,
Var(X,(t)) = 6°n, forn=1,2,3,... (5.21)

Using (5.18), we obtain from (5.21) that

52
Var(X,(t)) = —t, forn=1,2,3,... (5.22)
T

We will assume that, as the number of steps, n, increases, the step sizes § and
2

7 tend to 0 while the ratio — remains constant. This can be achieved by
T
choosing steps of length § satisfying
2Dt

52 2
— (5.23)

where D is a constant to be defined shortly with units of length? /time, and
choosing the duration of each time step to be, according to the relation in
(5.18),

t
= —. 5.24
r=t (5.21)
Using the stipulations in (5.23) and (5.24) we compute
2
6— =2D;
-
so that,
52
D=—. 2
2T (5:25)

The constant D defined in (5.25) is called the diffusion coefficient and, as noted
earlier, has units of squared length per time (e.g., cm?/sec). Combining (5.22)
and (5.25) we see that

Var(X,(t)) =2Dt, forn=1,2,3,... (5.26)

Thus, the mean—square displacement of a Brownian particle in a time interval
[0,¢] is proportional to t; the constant of proportionally is 2D. This gives the
following interpretation for the diffusion coefficient:

mean-square displacent in [0, ¢]

D:
2t ’

for ¢ > 0.
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The sequences of random variables, (X, (t)), defined by (5.19) and (5.18),
where the size-step § and the time-step 7 are given by (5.23) and (5.24), re-
spectively, has the properties that the expectation of each X, (¢) is 0, and the
variance of each X,,(t), as shown in (5.26), is a constant multiple of ¢. We next
consider what happens to the random process (X, (t)) as n tends to co. Since
the steps § and 7 tend to 0 as n tends to oo, according to (5.23) and (5.24),
respectively, we expect to get a continuous random process X (¢) in the limit as
n — oco. The precise statement of this limiting process is provided by the notion
of convergence in distribution.

Definition 5.2.1 (Convergence in Distribution). Let (Y,) be a sequence of
random variables with cumulative distribution functions F, , forn =1,2,3,...,
and Y be a random variable with cdf F,. We say that the sequence (Y,,)
converges to Y in distribution, if

lim F, (y) = F, (y) (5.27)

n— 00

for all y at which F, is continuous.
We write b
Y, Disty  asn — oo.
Thus, according to (5.27), Y, D'y means that

lim Pr(Y, <y)=Pr(Y <y),

n— oo
for all values of y at which the cdf of Y is continuous
We will derive the limiting distribution of the random process (X, (t)) as

n — oo as a consequence of the Central Limit Theorem, where (X, (t) is defined
in (5.19), in conjunction with (5.18) and (5.23).

Theorem 5.2.2 (Central Limit Theorem). Suppose Y7,Y3,Y3... are indepen-
dent, identically distributed random variables with E(Yy) = u and finite vari-
ance Var(Yy) = o2, for all k. Define

Sy
7, — k=L
Vno

Then, (Z,,) converges in distribution as n — oo to a continuous random variable,
Z, with probability density function

forn=1,2,3,...

fr(z) = e‘z2/2, for z € R. (5.28)
Thus,
Z Y —np .

lim Pr | =2

= <z =
n—00 \/ﬁ(j = [m

e~ /2 du, for all z € R.

§
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We will apply the Central Limit Theorem with Y, = §Sk, for all k; so that,
E(Y}) = 0 and Var(Y}) = §2 for all k. Thus, since the Sj’s are assumed to be
independent, the Central Limit Theorem implies that

n

> 65k

k=1 Dist
is 7

NZX) ’
where Z has the pdf given by (5.28). Consequently, in view of the definition of
X, (t) in (5.18) and the definition of ¢ in (5.23),

X (t 8

V2Dt ’

It follows from (5.29), the definition of convergence in distribution, and the
definition of the pdf of Z in (5.28) that

as n — 00,

as n — 00. (5.29)

. X, (t) ) /z 1 2
lim Pr <z)= e W /2 du, for all z € R. 5.30
(\/2Dt ( )

n—00 Lo V2T
We obtain from (5.30) that, for any ¢,d € R, with ¢ < d,
, X, (1) ) /d 1 e
lim Pr(c< <d| = e /2 ds, 5.31
n—oo ( A /2Dt ¢ /271_ ( )
and ¢t > 0.

Now, for any a,b € R, with a < b, observe that
a_ _ Xn(t) . b
V2Dt V2Dt 2Dt

Pr(a<Xn(t)<b):Pr( ), for t > 0;

so that, using (5.31),

b/V2Dt 25
lim Pr(a < X,(t) <b :/ e % /%ds,, fort>D0. 5.32
dmPre<xw<n= [ o (5.32)

Next, make the change of variable

Tz =vV2Dt s

to obtain from (5.32) that

lim Pr(a < X,(t) < —=*/ADt Gs for t > 0. (5.33)

|
b) = / —e
=00 o VAnDt
Hence, we have shown that the Central Limit Theorem implies that the sequence
of random variables, (X,,), converges in distribution as n — oo to a continuous
random variable, which we will denote by X (t), with pdf

1
pz,t) = T e=" /DY for p e Rand t > 0, (5.34)
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according to (5.33). We therefore have that

Pr(X(t) <z)= / p(s,t) ds, for all x € R, (5.35)
where p(s,t) is given by (5.34) with s in place of x.

It can be shown that the function p defined in (5.34) satisfies the the one-
dimensional diffusion equation in (5.2)

op _

ot = Pogz (5.36)

(see Problem 1 in Assignment 9). We mentioned earlier that partial differential
equation in (5.36) is the equation that describes the evolution of the temperature
distribution, u(x,t), in a rod made of material with constant conductivity, ,
specific heat, ¢, and density, p, that was derived in Assignment #4. In this case,
the diffusion coeflicient is

K

D=—.

cp
In the next section we show how knowledge of fact that the function p defined
in (5.34) satisfies the diffusion equation in (5.36) can be used to solve the initial

value problem for the heat equation in an infinite rod.

5.3 Solving the One-Dimensional Heat Equa-
tion
It follows from (5.34) in the previous section that the probability density func-

tion, p(x,t), for the location, X (t), of a Brownian particle at time ¢ is given
by

1
p(z,t) = TiDi e~ /4D for x e Rand t > 0. (5.37)

The function p defined in (5.37) is also called the heat kernel. In addition to
solving the heat equation in (5.36), it satisfies the following properties; the first
of which is simply a consequence of the fact that, for each ¢t > 0, p(z,t) is a
probability density function and that it is symmetric around z = 0.

Proposition 5.3.1 (Properties of the Heat Kernel). Let p(x,t) be as defined
in (5.37) for z € R and ¢t > 0.

(i) p(x,t) >0 for all z € R and ¢ > 0, and

(o)
/ plx —y,t)dy=1, forallz e R andallt>0. (5.38)

—0o0
(ii) If x # 0, then lim p(z,t) =0.
t—0+

(iii) If =0, then lim p(x,t) = +o0.
t—0+t
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Let f: R — R be a bounded function that has at most a countable number
of isolated jump discontinuities. Let M > 0 be such that
lf(y)) < M, forallyeR. (5.39)

In this section we show how to use the heat kernel in (5.37) to obtain a solution
to the initial value problem

2
a—u = Da—z, reR, t>0;
u(z,0) = f(=), xR

We will see that the function, u: R x (0,00) — R, defined by

u(z,t) = / p(x —y,t)f(y) dy, forz € Randt>0, (5.41)

— 00

is a candidate for a solution of the initial value problem in (5.40).
We first note that, in view of (i) in Proposition 5.3.1 (see (5.38)) and the
estimate in (5.39),

‘/ p(x —y,t)f(y) dy‘gM, for x € R and t > 0,

so that the function u in (5.41) does indeed define a real valued function. Ob-
serve, however, that u(x,0) is not defined by (5.41). Thus, in order to show
that « in (5.41) solves the initial condition in (5.40), we need to define

u(z,0) = tl_i>%l+ u(z,t), (5.42)

provided that the limit on the right-hand side of (5.42) exists. In this section
we will prove the following fact:

Proposition 5.3.2. Let u(z,t) be as defined in (5.41) for + € R and ¢ >
0, where f: R — R is bounded with at most a countable number of jump
discontinuities.

(i) If f is continuous at x,, then

lim wu(x,,t) = f(2o)- (5.43)

t—0t

(ii) If f has a jump discontinuity at z,, then

li oy t) =0l Lo 5.44
g, (o) 2 (5:44)

where

flzh) = lim+ f(z) and f(z;)= lim f(z).

T—x, T—=T,
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In the proof of Proposition 5.3.2 we will make use of the error function,
Erf: R — R,
defined by
Erf(z) = % /Ow e dr, forxz e R, (5.45)
and its properties:
Proposition 5.3.3. Let Erf: R — R be as given in (5.45). Then,
(i) Erf(0) = 0;

(ii) lim Erf(z) = 1;

T— 00

(iii) lim Erf(z) = —1;

r—r—00

A sketch of the graph of y = Erf(z) is shown in Figure 5.3.1.

e —-1.0F

Figure 5.3.1: Sketch of Graph of Error Function

Lemma 5.3.4. Let p(z,t) denote the heat kernel defined in (5.37) for x € R
and t > 0. For § > 0,

oo

li t) dx = 0. 5.46
Jm | p(x,t) dx (5.46)
and
-5
lim p(z,t) de = 0. (5.47)

t—0t ) _
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Proof: Make the change of variables y = — T to write

V4Dt
/00 p(zx,t) dz
5

o 1 2
. ,—x*/4Dt d
e T
/6 VAar Dt
1 © 2
= — e ¥ dy
VT Js)vaDt

1

- tma(i)]

where we have used the definition of the error function in (5.45) and the fact
that -
/ eV’ dy = ﬁ
0 2
We then have that

/600 p(ot) dr = % [1 Bt (Wfﬁ)] ,  fort>0. (5.48)

Now, it follows from (5.48) and (ii) in Proposition 5.3.3 that

oo

li 1) dr =0,
Ja [, plet) do

which is (5.46). Similar calculations can be used to derive (5.47). W

Proof of Proposition 5.3.2: Let u(x,t) be as defined in (5.41) where p(z,t) is
the heat—kernel given in (5.37).

(i) Assume that f is continuous at z, and let £ > 0 be given. Then, there
exists > 0 such that

[y — 2ol < 8= 1£(y) — flao)] < 3. (5.49)

We consider

oo

u(To,t) — flz0) = /OO p(zo —y,t) f(y) dy — f(wo)/ p(xo —y,t) dy,

— 0o — 00

where we have used the definition of u(z,t) in (5.41) and the fact (i) in Propo-
sition 5.3.1 (see the equation in (5.38)). We then have that

ueost) ~ flao) = [ T Pl — 0, 0(F(y) — f(x0)) dy,

so that
[u(zo,t) — f(2o)| < / p(zo =y )| f(y) — flz0)] dy, (5.50)

—0o0
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where we have used the fact that p(z,t) is positive for all z € R and all ¢t > 0.
Next, re-write the integral on the right-hand side of (5.50) as a sum of three
integrals,

/ T peo—u, OIF(y) — Flao)| dy =

— 00

To—0
/ p(z0 —y, DI () — F(zo)| dy

— 00

5 (5.51)
To+
+ / pleo 9.1 () ~ fa)| dy

o

[ plea =00l - fw)] do
To+0

We first estimate the middle integral on the right—hand side of (5.51), using

(5.49) and (5.38) to get

To+0 e
[ plaa— v 0150) - flao)l dy < 5. (552)

o

Next, use (5.39) to obtain the following estimate for the last integral on the
right-hand side of (5.51),

/ P(0 — 9. 0)|f(5) — F(xo)| dy < 2M / o —y,t) dy.  (5.53)
To+6 Zo+0

Make the change of variables x = y — x,, in the integral on the right—hand side
of (5.53) to obtain

/ T (e — D) — )] dy < 2M /5 " p(at) dy. (5.54)

otd

It follows from (5.54) and (5.46) in Lemma 5.3.4 that

oo

lim p(wo - yat)|f(y) - f($0)| dy = 0;

t—0t To+6

thus, there exists d; > 0 such that

oo

0<t<di= [ pleo—p0lf) = So)ldy <5 (559)
Tot

Similar calculations to those leading to (5.55), using (5.47) in Lemma 5.3.4, can
be used to show that there exists d > 0 such that

To—0

0<t<dy= |  plao—y1)lf(y) ~ flwo)] dy < % (5.56)
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Let 03 = min{dq,d2}. It then follows from (5.51), in conjunction with (5.52),
(5.55) and (5.56), that

0<t<63:>/_ (o — 1, O F(y) — F(w0)] dy < e.

We have therefore proved that

tl_i>1(€1+ i p(zo — y7t>|f<y) - f(xo)l dy = 0. (557>

It follows from (5.57) and the estimate in (5.50) that

lim |u(z,,t) — f(z,)| =0,

t—0t

which yields (5.43) and part (i) of Proposition 5.3.2 has been proved.

(ii) Assume that f has a jump discontinuity at x, and put

flzh) = lim+ f(z) and f(z;)= lim f(z). (5.58)

=Ty TTo

Let € > 0 be given. It follows from (5.58) that there exists § > 0 such that
To <y <o+ = |f(y) - fla)| < 3, (5.59)

and .
x075<y<xo:>|f(y)ff(:c;)|<§. (5.60)

Use the definition of u(z,t) in (5.41) to write

+ — o0
aayt) = PELTIE) [ e,y 0100) dy = 300 - 5 1(a3),
and note that
% = /_ i p(xo —y,t) dy = / p(zo — y,t) dy, (5.61)

by virtue of (5.38) and the symmetry of the heat kernel. We therefore have that

xr x
oty — 1)

_ / " o — 9, O(Fly) — F(a3)) dy

— 0o

+ / " p(@o — () — Flad)) dy,

o



90 CHAPTER 5. DIFFUSION

so that
xt x-
oty - L)1)
</ " o — 0O G) — )] dy (5.62)

; / " p(@o — D) — f()] dy,

o

We re-write the last integral on the right-hand side of (5.62) as a sum of two
integrals,

/ T p@o—y. D) — F(a)] dy

o

To+0
- / p(0 — 1) f(y) — F(z3)] dy (5.63)
4 / D0 — 1, 8)|f(w) — £ dy,
zo+0
where
To+d To+8
[ o= v i) - fa)ldy < 5 [ b —ut) dy< S (560)

o

by virtue of (5.60) and (5.61).
Similar calculations to those leading to (5.55) can be used to show that there
exists d; > 0 such that
o €
0<t<é = 6p(xo—y,t)|f(y)—f(wi)|dy<§~ (5.65)
Zo+

Combining (5.64) and (5.65), we obtain from (5.63) that

e 3
0<t<ti= [ ple-ublfw) - Dl dy<5 (560)
Similarly, we can show that there exists do > 0 such that
To B c
0<t<s= [ ple-ublfw) - f@)ldy < (6D

Thus, letting 63 = min{d1, d2} we see that the conjunction of (5.66) and (5.67),
together with (5.62), implies that
+ —_
P (/AR (7]
2
We have therefore established (5.44) and the proof of part (ii) of Proposition
5.3.2 is now complete. W

0<t<dy=>
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It remains to see that the function u defined in (5.41), for x € R and ¢ > 0,
solves the diffusion equation in (5.40).

Proposition 5.3.5. Let u be given by (5.41), where f: R — R is a bounded
function. Then, u is C°° and
0 0?
a—?(x,t):Da—;;(x,t), forz € R and t > 0.
Proposition 5.3.5 follows from the fact that the heat kernel, p, also solves
the diffusion equation (5.36), once we can see that

g—?(z,t) = / %(z —y,t)f(y) dy, for x € Rand ¢ > 0, (5.68)
and
2 oo 92
%(x,t) = %(m —y,t)f(y) dy, forx € R andt> 0. (5.69)
x oo O

The expression in (5.68) is justified by the assumption that f is bounded (see
(5.39)) and the estimate

e 1
/ ap(x—y,t)‘ dy < o for all z € R and ¢ > 0. (5.70)
Similarly, the expression in (5.69) is justified by the facts

/m ax(x—y,t)’ dy =

1
, forallz e Randt >0,
VrDt
and

[e'e} an 1
— < —
/ ‘axg(fﬂ yﬂf)’ dy < Dp’ for all z € R and t > 0,

where the last estimate can be derived from (5.70) by using the diffusion equa-
tion in (5.36).

— 00

Example 5.3.6. Solve the initial value problem for the diffusion equation in

(5.40), where
1, if —1l<z<1;
=" S 5.71
/(@) {O, elsewhere. ( )

Solution: A sketch of the graph of the initial condition, f, is shown in Figure
5.3.2. Note that f has jump discontinuities at —1 and at 1.

Using the formula in (5.41) we get that a solution to the initial value problem
(5.40) with initial condition given in (5.71) is given by

1
u(x,t):/ p(x —y,t) dy, forxz e R andt>0,
~1
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Figure 5.3.2: Initial Condition for Example 5.3.6

or

1 1
u(z,t) = = / e~ @) /4Dt gy for x € R and t > 0, (5.72)
—1

vV

r—y

V4Dt

Make the change variables r =

in (5.72) to obtain

e " dr, forzeRandt>0,

or
z41

z—1
1 VaDt 2 1 VaDt 2

)= — dr — — - dr, 5.73

u(z,t) ﬁ/o e r ﬁ/o e r (5.73)

for x € Rand ¢t > 0.
Making use of the error function defined in (5.45), we can rewrite (5.73) as

Y e == | ——

for x € R and ¢t > 0. Figure 5.3.3 shows plots of the graph of y = wu(x,t),
where u(z,t) is as given in (5.74), for various values of ¢ in the case 4D = 1.
A few interesting properties of the function w given in (5.74) are apparent by
examining the pictures in Figure 5.3.3. First, the graph of y = u(z, ) is smooth
for all ¢ > 0. Even though the initial temperature distribution, f, in (5.71) is
not even continuous, the solution to the initial value problem (5.40) given in
(5.74) is in fact infinitely differentiable as soon as the process gets going for
t > 0. Secondly, the function u(z,t) given in (5.74)) is positive at all values
of x € R for ¢ > 0. In particular, for values of x with |z| > 1, where the
initial temperature is zero, the temperature rises instantly for ¢ > 0. Thus, the
diffusion model for heat propagation predicts that heat propagates with infinite
speed. Thirdly, we see from the pictures in Figure 5.3.3 that

lim u(z,t) =0, forall z €R. (5.75)

t—o0

O
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— 0.5(erf(3.16228 (x + 1)) - erf(3.1622

— 0.5 (erf(1 - x) +erf(x + 1))

1 x1 )
el
V1o (V10 )

- 0.5|er

. . . .
-3 -2 -1 1 2 3
Computed by Wolfram|Alpha

Figure 5.3.3: Sketch of Graph of y = u(x,t) for t =0.1,1, 10

The observation (5.75) in Example 5.3.6 is true in general for solutions to
the initial value problem in (5.40) for the case in which the initial condition, f,
is square—integrable; that is,

/ |f(2)|? dz < oo (5.76)
Observe that, for the function f in Example 5.3.6 satisfies
| 1@ =2,

so that the integrability condition in (5.76) holds true for the function in (5.71).

Before we establish that (5.75) is true for any solution of the initial value
problem (5.40) in which the initial condition satisfies (5.76), we will first need
to derive other properties of the function u given in (5.41).

Proposition 5.3.7. Let f: R — R be continuous and satisfy (5.76); that is,

| @ ar <o

Put
u(z,t) = / p(z —y,t)f(y) dy, forx € Randt>0. (5.77)
Then,
/ |u(x,t)|? dr < oo, for all t > 0, (5.78)
and
= | ou 2
%(x,t) dxr < oo, forallt>0. (5.79)
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Proof: Let u be given by (5.77), where f satisfies the condition in (5.76). Apply
the Cauchy—Schwarz inequality (or Jensen’s Inequality) to get

lu(x,t)]? < / p(z—y, )| f(y)|* dy, forx € R and t >0, (5.80)

— 00

where we have also used (5.38).
Integrate with respect to « on both sides of (5.80) to get

[ weopar < [T [ se—poliF ds Gy

for ¢ > 0. Interchanging the order of integration in the integral on the right—
hand side of (5.81) we obtain

[ o < [T [ se-wnafa G

— 00 —00 —00

for t > 0. Tt follows from (5.82) and (5.38) that

/ lu(z,t)|* de < / If())? dy, fort >0, (5.83)
It follows from (5.83) and (5.76) that
/ lula, 6)[? dx < 00, for all ¢ > 0, (5.84)

which is the condition in (5.78).
Next, differentiate u in (5.77) with respect to x to get

@ B o (.13 _ y) e—(z—y)2/4Dt
so that 5 - ( )
au - _ _ T~y
Grw == [ pe—un' 5w a (585)

forzx € Rand t > 0.
Proceeding as in the first part of this proof, use the Cauchy—Schwarz in-
equality (or Jensen’s inequality) to obtain from (5.85) that

ou 2

Pwn| < [Tre-vdS B ywr a6

. 4D22

forzx € Rand t > 0.
Next, integrate on both sides of (5.86) with respect to « and interchange the
order of integration to obtain

[ 2] < g [ 1508 [ vt vt e iy, 55

4D | -
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for t > 0.
Observe that the inner integral in the right—hand side of (5.87) is simply the
variance, 2Dt, of the probability density function p(z,t), so that

/ (z —y)?p(x —y,t) de = 2Dt, forally € R and t > 0. (5.88)

— 00

ou 2

Putting together (5.87) and (5.88)
1 (oo}
)| dr < / )2 dy, fort >0,

/_oo 2Dt o

which implies (5.79) by virtue of (5.76). M

We will next show that, if in addition to the integrability condition in (5.76)
for the initial distribution, f, we also impose the conditions (5.78) and (5.79) on
the initial value problem (5.40), then any solution must be of the form given in
(5.41). This amounts to showing that the initial value problem (5.40) in which
the initial condition satisfies (5.76), together with the integrability condition
in (5.78) and (5.79), has a unique solution. We will need the estimate in the
following lemma when we prove uniqueness.

Lemma 5.3.8. Let f: R — R be a continuous function satisfying (5.76). Let
v be any solution of the problem

%: %, forx € R, t > 0;
u(z,0) = f(x), for z e R;
/OO lu(x,t)|? dr < oo, for all ¢ > 0; (5:89)
/_Z‘ZZ(x,t)z dr < oo, forallt>D0.
Then,
/m (2, D)2 do < /Oo f(2)2 dz, fort > 0. (5.90)

Proof: Let v denote any solution to the problem (5.89), where f satisfies the
integrability condition in (5.76).
In order to establish (5.90), set

E(t) :/ lv(z,t)|* dz, for all t > 0. (5.91)
—00

It follows from the integrability condition in (5.89) that E(t) in (5.91) is well
defined for all ¢ > 0 as a real valued function, E: [0,00) — R. Note also that

B0 = [ If)P a. (5.92)

— 00
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by virtue of the initial condition in problem (5.89).
Next, observe that, since v satisfies the diffusion equation in (5.89), that is

U = D'U:mvz
then F is differentiable and
E(t) = / 20(w, yor(2, 1) da = 2D/ (2, Yo (2, 1) dz, (5.93)
for t > 0.
We note that the integrability conditions in (5.89) imply that
lim v(z,t) =0and lim wv(z,t) =0, fort >0, (5.94)
T—00 T——00
and
lim vy (z,t) =0and lim wvy(z,t)=0. fort>0, (5.95)
T—00 T—>—00

Integrate by parts the last integral in (5.93) to get

R
E'(t) = lim |v(R,t)vy(R,t) — v(—R,t)v.(—R,t) —/ (v, (x,1))? dac] ,
R— o0 _R
so that
, o) o 2
E'(t)= —/ %(a:,t) dx, fort >0, (5.96)

by virtue of (5.94), (5.95) and the last integrability condition in (5.89).
Now, it follows from (5.96) that

E'(t)<0, forallt>0,
so that E is nondecreasing in ¢ and therefore
E(t) < E(0), forallt>0. (5.97)
The estimate in (5.90) follows from (5.97) in view of (5.91) and (5.92). W

Proposition 5.3.9. Let f: R — R be a continuous function satisfying (5.76).
The problem

0 0?
3—1;: a—z, forz € R, t > 0;
T

u(z,0) = f(z), for xz e R;

oo (5.98)
/ lu(x, )| de < oo, for all ¢ > 0;

oo 2
[m %(x,t) dr < oo, forallt >0,

has at most one solution.
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Proof: Let v be any solution of the problem in (5.98) and let u be given by
(5.77). Tt follows from Proposition 5.3.2, Proposition 5.3.5 and Proposition
5.3.7 that u solves problem (5.98). Put

w(z,t) =v(z,t) —u(x,t), forx e R andt> 0. (5.99)

It follows from the linearity of the differential equation in (5.98) that w also
solves the diffusion equation; indeed,

wy = v — Up = DUpy — Dy = D(Vpy — Ugay) = DWay.

The function w defined in (5.99) also satisfies the integrability condition in
problem (5.98) ; in fact, by the triangle inequality,

w(z, )] < |v(z, )] + u(z, 1),
so that
w(z, O < [v(z, t)]* + 2v(e, )] - [ulz, t)] + Ju(z, 1), (5.100)
for all x € R and all ¢ > 0. Next, use the inequality
2ab < a? + b2, for a,b € R,
in (5.100) to get
lw(z, t)|* < 2 [|v(z, ) + u(z, )], for z € Rand t > 0. (5.101)

Integrating on both sides of (5.101) with respect to x we then obtain that

/ o(a, )| dz < 2 [/ (e, )2 d +/ fu(z, )2 dx]  fort>0,

—00 —o0 —00
so that
oo
/ lw(z,t)|* de < co, for t >0,
—o0

since both w and v satisfy the integrability conditions in problem (5.98). Simi-
larly, we can show that

/ lw,(z,t)]* de < oo,  for t > 0.

Now, observe that, since both v and w satisfy the initial condition in problem
(5.98,
w(z,0) =v(z,0) —u(r,0) = f(z) — f(x) =0, forallzeR,

so that w is a solution of problem (5.89) in which the initial condition is the
constant function 0, it follows from the estimate (5.90) in Lemma 5.3.8 that

/ lw(z,t)|* de <0, fort >0,

— 00
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from which we get that

oo
/ |w(z,t)|* de =0, fort>0. (5.102)
—o0
It follows from (5.102) and the continuity of w that
w(z,t) =0, forallzeRandt>0,
so that
v(x,t) = u(z,t), forallzeRandt >0,

in view of the definition of w in (5.99). Hence, any solution to the problem in
(5.98) must be that given by (5.77). N

We will next show that, if u is any solution of problem (5.98), where f
satisfies the integrability condition

/ 1F(2)[? dz < oo, (5.103)
then
tlim u(z,t) =0, forall z € R. (5.104)

To see why this is the case, apply Proposition 5.3.9 to write

o e—(w—y)2/4Dt

oo VATDt

for all x € R and ¢ > 0, from which we get that

u(z,t) = fy) dy,

oo ef(mfy)2/4Dt

e VATDt

for all z € R and ¢t > 0. Next, square on both sides of (5.105) and apply the
Cauchy—Schwarz inequality to get

u(z,t)] < |f ()| dy, (5.105)

(w0 < = /OO e(.xﬁy)z/m ay [ 15w d (5.106)
u(z,t)|” < ) .
87TDt —00 27TDt 4 —00 Y Y
where
oo ,—(x—y)?/2Dt
——dy =1 5.107
oo V2wDt Y ( )
Combining (5.106) and (5.107), we then get
2 1 > 2
u(x,t)|]” < dy, 5.108
e < o= [ 1P dy (5.108)

forzr € Rand t > 0.
It follows from (5.103) and (5.108) that

lim |u(z,t)]* =0, forall x € R,
t—o0

which implies (5.104).
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5.4 Macroscopic View of Diffusion

Imagine that a certain number of Brownian particles moves within the cylin-
drical region with cross—sectional area A pictured in Figure 5.4.4. Assume the

A\ A} A} 2\
AW 7 7 7

T r+9

xT

Figure 5.4.4: Cylindrical Region

particles are only allowed to move parallel to the z—axis. As in the case of the
one-dimensional random walk discussed in Section 5.1, the particles can move
to the right or to the left a distance § in a short time 7, each with probability
1/2.

The flux, J,(x,t), gives a measure of the number of particles that cross a
unit cross—sectional area at the cross—section at x and at time ¢ in a unit of
time. We will next see how to estimate J,(z, ).

Consider a small time interval [t,t 4+ 7], where 7 > 0. Assume that, during
that time interval, each particle moves, either to the right or to the left, a
distance § > 0. The probability that a given particle moves to the right is 1/2,
while the probability that it will move to the left is also 1/2. Assume that both
6 and 7 are very small. The number of particles that cross the cross—section at
x is approximately

Jo(z, 1) A, (5.109)

by the definition of J,. The quantity in (5.109) can also be estimated as follows:
Let C(x,t) denote the concentration of particles at time in the cross—section at
x and time ¢, in units of number of particles per volume. Assume that C' is

N
\V

NA

A A
/ J

T+0

T

SN

T —0

Figure 5.4.5: Estimating J,(z,t)

a differentiable function with continuous partial derivatives. If 6 > 0 is very
small, the then number of particles in the cylindrical region in Figure 5.4.5 with
axis along the segment [x — 4, z] is, approximately,

C(x,t)Ad (5.110)

On average, in the time interval [t,¢ 4+ 7], about half the number in (5.110)
of particles will move to the right in Figure 5.4.5 crossing the section at =x.
Similarly, about half of

Clx+06,1)Ad
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will move to the left and cross over the section at . Thus, another estimate for
the number in (5.109) is

(@, ) AT ~ %O(x, £AS — %C(:c + 6,445, (5.111)

where the minus sign indicates the fact that half of the particles in the section
with axis [z, z + §] move to the left. Dividing the expression in (5.111) by At
and rearranging the right—-hand side, we obtain

52 [C(x+6,t) — C(x,t)

Jx(xvt)m_y 5

(5.112)

As we did in Section 5.2, in going from random walks to Brownian motion, we
let ¢ and 7 tend to 0 in (5.112) in such a ways that

52
= — A1
27 (5.113)
remains constant, to obtain from (5.112) that
0
Ji(z,t) = =D —[C(z,t)], forzeRandt>0, (5.114)

ox

where we have used the assumption that C'is is differentiable. The expression in
(5.114) is known as Fick’s first equation (see [Ber83, pg. 18]), or Fick’s First Law
of Diffusion. It postulates that the flux of Brownian particles is proportional to
the negative gradient of the concentration with constant of proportionality D,
the diffusion constant of the medium in which the particles are, or diffusivity,
which has units of squared length per time according to (5.113). Thus, the
diffusing particles will move from regions of high concentration to regions of low
concentration.

Next, we apply a conservation principle, like those discussed in Section 2.1.1,
the total number, Q(t), of particles within the section of the cylindrical region
between the cross—sections at z = a and x = b, for a < b, pictured in Figure
5.4.6. The number Q(t) is given by

N A
\V /

a

AN

Salny

Figure 5.4.6: Conserved Brownian Particles

b
Q) = / C(xz,t)A dx, for all ¢ > 0. (5.115)

The rate of change of the number of particles in the cylindrical region in Figure
5.4.6 between the cross—sections at © = a and x = b has to be accounted for by
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the number that enter at £ = a per unit time minus the number that leave at
x = b per unit time:
dq

= Ta(a,)A— (b, )A, (5.116)

where we have used the definition of the flux, J,. Assuming that the concen-
tration, C, is a C! function (i.e., the partial derivatives of C exist and are
continuous), we obtain from (5.115) that

)
/a 5 1C@ )] dz = Jo(a,t) = Ju(b,1). (5.117)

Next, assume that the flux is also C' and apply the Fundamental Theorem of
Calculus on the right-hand side of (5.117) to get

ba

/a %[C(m’t” dz = — j 3 e (@ O] da. (5.118)

Rewrite the equation in (5.118) as
“ro 0
/ {&[C(x’t)] + &C[Jx(x,t)]} dr =0, foralla,beR witha<b, (5.119)

and use the assumptions that C' and J, are C' functions to conclude from
(5.119) that

0 0
a[C(:mt)] + a[Jm(x,t)] =0, forzxeRandt>0,
. 0 9
a[C(w,t)] = —%[Jx(x,t)], forx e Rand ¢t > 0, (5.120)

Combining Fick’s First Law in (5.114) with the expression in (5.120), and as-
suming that C is a C? function, leads to

2
oC _ PC

which is the one-dimensional diffusion equation that we have derived previously
in these notes. The expression in (5.121) is also known as Fick’s second equation
(see [Ber83, pg. 20]), or Fick’s Second Law of Diffusion.

5.5 Diffusion in Higher Dimensions
5.6 Reaction—Diffusion Equations

5.7 Diffusion and Advection
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Appendix A

Some Facts from Analysis

A.1 Differentiating Under the Integral Sign

Solutions of many problems in the Applied Mathematics often require the differ-
entiation of functions defined in terms of integrals of other functions. In many
instance this involves differentiation under the integral sign. In this appendix
we preset a few results that specify conditions under which differentiation under
the integral sign is valid.

Proposition A.1.1 (Differentiation Under the Integral Sign). Suppose that
h: [a,b] x R — R is a function whose partial derivative with respect to y exists
for almost all (z,y) € [a,b] x R. Define H: R — R by

b
H(y) = / h(z,y) dz, forall yeR. (A1)
a

h
Assume that the functions h and % are absolutely integrable over [a, b]. Then,

H is differentiable and its derivative is given by
*9
1) = [ 5 hey) do (A2)
a OV
Remark A.1.2. A function f: [a,b] — R is said to be absolutely integrable if

b
[ 1@ d <o, (A3)

where the integral on the left-hand side of (A.3) is taken to be the Lebesgue
integral of | f|; thus, in the statement of Proposition A.1.1 we are assuming that

|h| and

h
g‘ are Lebesgue integrable. In the proof of Proposition A.1.1 that
Y

oh
we will present in this appendix, we will assume that |h| and ‘8 are bounded
Y

103
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and Riemann integrable; thus, we will be able to use the theory of Riemann
integration. However, the statement in the proposition is true in the generality
in which it was stated, and can be proved using the full power of the theory of
Lebesgue integration.

Before proving special case of Proposition A.1.1, we present a few results
about bounded, Riemann integrable functions. We note that continuous func-
tions satisfy these two properties on [a, b].

Lemma A.1.3. Let f: [a,b] — R be bounded and Riemann integrable over
[a,b]. Define F': [a,b] — R by
Fla) = / F(#) dt,  forall z € [a,B], (A4)

Then, F is continuous on [a, b].

Proof: Since we are assume that f is bounded on [a,b], there exists a constant
M > 0 such that
|f()| <M, foralltc€ [a,b]. (A.5)

For z,y € [a, b], use the definition of F' in (A.4) to compute

Fly) = Fa) = [ f00) . (4.6)

Then, taking absolute value on both sides of (A.6),

y
F(o) - F@) < [ If@)] at
for the case in which z < y. Thus, in view of (A.5),
|F(y) = F(z)| < My — 2],
from which the continuity of F' follows. M

Lemma A.1.4. Let f: [a,b] Xx R — R be a function satisfying = — f(x,y) is
bounded and Riemann integrable for all y € R, and y — f(x,y) is continuous
for almost all = € [a,b]. Define F': [a,b] — R by

b
Fy) = / f(z,y) dx, for ally € R. (A.7)

Then, F' is continuous in R.

Proof: Fix y € R. Given € > 0, for each x € [a,b] there exists 6(x) > 0 such
that
2=yl <é(x) = [f(2,2) = fz,y)] <e.
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Now, since [a, b] is compact, we can find § > 0 such that
lz—yl <d = |f(z,2) — f(z,y)| <e, forallz € la,b].
Consequently, using the definition of F' in (A.7),
2=yl <0 = [F(z) = F(y)| < (b —a)e,

from which the continuity of F' at y follows. W

oh
Proof of special case of Proposition A.1.1. We assume that |h| and ‘8’ are
Y

bounded and Riemann integrable.
Fix y € R and let z € R. Then,

Wz, ) = hz.y) + g—’y‘mxz —y) 4ol —y)). (A8)

where the expression o(|z — y|) is understood to mean

i OUz = 9D)
=y [z -y

= 0. (A.9)

By virtue of the compactness of [a, b], we may assume that (A.8) and (A.9) hold
uniformly for all = € [a, b].
Thus, using the definition of H in (A.1) we get that

b
H(z) = H(y) +/ Z—Z(x,y)(z —y) dz+o(|z —y|)(b—a), (A.10)

where we have substituted the expression for h(z, z) into (A.1) to obtain H(z).
Rearranging the expression in (A.10) we get

b
oh
HE) =) = (=) [ i) dosb-aollz=s). (A1)
Next, divide on both sides of (A.11) by z — y, assuming that z # y, to get

H(z) —H(y) _ [*oh o(lz—yl)
ﬁ— ; a—y(x,y) da:—i—(b—a)Ty, fOI‘Z?éy. (A12)

Finally, let z — y on both sides of (A.12) and use (A.9) to get

_ b
lim L) = HW) _ [TOR
=y 2y o 0y

which is the assertion in (A.2). W
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Proposition A.1.5 (Differentiation Under the Integral Sign and Fundamental
Theorem of Calculus). Suppose that h: [a,b] x R x R — R is a continuous
function. Define

t
H(y,t) = / h(z,y,t) de, forallyeR, teR. (A.13)

Assume that h has partial derivatives (%[h(x, y,t)] and %[h(m,y,t)] that are

absolutely integrable over [a,b]. Then, H has partial derivatives are given by

%mmmzlgym%mm (A.14)

and
0

&[H(y,t)] = h(t,y,t) —l—/a %[h(w,y,t)] dx. (A.15)

Proposition A.1.5 can be viewed as a generalization of the Fundamental
Theorem of Calculus and is a special case of Leibnitz Rule.

Proof of special case of Proposition A.1.5. Asin the proof of Proposition A.1.1,
we prove this proposition for the special case in which the partial derivatives

0 0
8—[h(x, y,t)] and &[h(a:, y,t)] are bounded and Riemann integrable.
Y
The proof of the assertion in (A.14) follows from Proposition A.1.1 because
t is fixed when computing the partial derivative with respect to y.
To establish the assertion in (A.15), fix ¢ and y in R, let 7 € R and use

(A.13) to compute
H(y,7) = / h(z,y,T) dz. (A.16)

Next, subtract the expression in (A.13) from that in (A.16)to get

T

H(y,7)— H(y,t) :/ h(z,y,7) dx —/ h(z,y,t) dz,

a

which we can rewrite as

H(y,7)— H(y,t) = /Th(x,y,T) dm—/h(mym)dw

or

t t
+/hmuﬂM—/hm%ﬂm

H(yaT) _H(yat) = /t h($7y77) dx
(A.17)

+/ [h(x,y,r) - h(x,y,t)} dzx.



A.1. DIFFERENTIATING UNDER THE INTEGRAL SIGN 107
We shall first see that the continuity of h implies that

lim
Tt T — 1

/ h(z,y,7) de = h(t,y,t). (A.18)
t
To establish (A.18), first observe that
1 T
h(t7 Y, t) S / h(ta Y, t) dl‘,
T—1J;

so that,

1
T—1

/t "Wz, y.7) de— h(t,y.1) = / “h(a,y.7) — Bty D) do. (A.19)

T—1

Let £ > 0 be given. Since we are assuming that h is continuous, there exists
6 > 0 such that

|z —t| < dand |1 —t| <6 = |h(z,y,7) — h(t,y,t)] <e. (A.20)

Thus, assuming that ¢ < 7, we obtain from (A.20) and (A.19) that
1 T
T —t| <6 = ‘Tt/ hz,y,7) de — h(t,y,t)| <e,
—tJi

which shows (A.18) for the case ¢ < 7. Similar calculations yield the result for
t>rT.

Next, use the assumption that the partial derivative of h with respect to ¢
exists to get

hz,y,7) = h(z,y,t) + %(I,y,t)(r —t)+o(jT —¢t)).

Then,

h(l‘,y,’?’) - h(x>y7t) = (T - t)%(:&y?t) + 0(|T - t|);

so that, integrating on both sides with respect to = from a to ¢
t tah
/ h(z,y,7) — hiz,y,1)] do = (r — t)/ O ,.1) d 4 of|7 — ).
a a
Consequently,

. 1
lim
Tt T —1

/ [h(z,y,T) — h(z,y,t)] de = / %(Ly,t) dx. (A.21)

Next, divide both sides of the expression in (A.17) by 7 —¢, for 7 # ¢, to get

H(y,7) - H(yt) _ 1 /;h(%yﬁ) da

T—1 T—1

(A.22)
1

T—1

+

/ (h(x,y,7) — h(z,9,0)] da,
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for 7 #£ t.
Finally, let 7 — ¢ in (A.22), and use the results in (A.18) and (A.21), to get
from (A.22) that

. H(yaT)iH(yat) _ tah
}_llg r—t *h(tay7t)+/a E(Qj,y,t) dl’,

which is the assertion in (A.15). W

A.2 Some facts about continuous functions

Proposition A.2.1. Let I denote an open interval of real numbers and f: I —
R a continuous function defined on I. Suppose that

b
/ f(z) de =0 for all intervals [a,b] C I; (A.23)

then, f(x) =0 for all z € I.

Proof: To prove this assertion, we use an indirect argument; that is, we assume
that (A.23) holds true, but f(x,) # 0 for some z, € I, and derive a contradic-
tion.

Assume that f is continuous on I and that (A.23) holds. Arguing by con-
tradiction, assume that there exists x, in I such that f(z,) # 0. We first show
that this implies that there exists § > 0 such that [z, — 0,2, + ] C I and

|f (o)
2

T E [To— 0,70+ = flz,)— < f(x) < f(zo) + |f(;co)| (A.24)
To see why (A.24) is true, apply the definition of continuity of f at x, with

€= |f(xo)‘ Then, there exists § > 0, which can be chosen small enough so
that [z, — 8,2, + 0] C I, with

|z —xo| <0 = x€Tand |f(z)— f(z,)| < |f(§o)| (A.25)

We then see that (A.24) follows from (A.25).
We consider two cases: (i) f(z,) > 0, and (ii) f(z,) < 0.
(i) If f(zo) > 0, we get from the lower estimate in (A.24) that

F @)l

x € [zo— 0, + 0] = f(z) > 5

Consequently,

o+
/' f(x) de > 8| (z0)| > 0,

o—0

which contradicts the assumption in (A.23).
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(ii) On the other hand, if f(x,) < 0, the upper estimate in (A.24) implies that

T € [To— 0,20 + 0] = f(z) < 7|f(§o)‘

Consequently,

To+0
/ f(@) dz < —8|f(z0)] <0,

0—0

which also contradicts the assumption in (A.23).

In both cases (i) and (ii) above, we get a contradiction with (A.23). Hence,
it must be the case that f(z) =0forallzel. N
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