Math 101
Homework 4

1) Let a and b be positive rational numbers such that $\sqrt{a b}$ is irrational. Prove that $\sqrt{a}+\sqrt{b}$ is also irrational.
2) Suppose A is a non-empty set of reals and $B=\{-a \mid a \in A\}$. Prove that if A is bounded below, then B is bounded above.
3) Let A is a non-empty set of reals and $p=\operatorname{lub}(A)$, and let $B=\{-a \mid a \in A\}$. Prove that $-p=\operatorname{glb}(B)$.
4) Suppose X is a set of reals such that for every $x \in X, a \leq x \leq b$. Prove that there exists a positive real number c such that for every $x \in X,|x| \leq c$.

Homework 5

Problem 4.6 and the following problems.

1) Let $x>0$. Prove that $\exists n \in \mathbb{N}$ st $n-1 \leq x<n$.
2) Let a be an upper bound for a set X. Prove that $a=\operatorname{lub}(X)$ iff for every $\varepsilon>0$ there is an element of X in $[a-\varepsilon, a]$.
3) Let $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Find $\operatorname{lub}(A)$ and $\operatorname{glb}(A)$ and prove your answers.
4) Let A be a non-empty bounded subset of the reals, and let B be the set of all upper bounds for A. Prove that $\operatorname{lub}(A)=\operatorname{glb}(B)$

Homework 6

Problems 4.8 (note in part (a), where it says observe, it means prove), 4.10, 4.14a), and 4.15.

