Math 131
Homework 4

1) Suppose that S is a non-empty set of reals which is bounded below. Prove that S contains a sequence $\left\{x_{n}\right\}$ which converges to $\operatorname{glb}(S)$.
2) Let (E, d) be a metric space containing a sequence $\left\{x_{n}\right\}$, which has subsequences $\left\{x_{n_{k}}\right\}$ and $\left\{x_{m_{j}}\right\}$ such that every term of $\left\{x_{n}\right\}$ is contained in one of these two subsequence. Suppose that $x_{n_{k}} \rightarrow a$ and $x_{m_{j}} \rightarrow a$. Prove that $x_{n} \rightarrow a$.
3) Prove that every sequence of reals has a monotonic subsequence.

Also, do problems 8, 9, 10, on pages 61-62 of Rosenlicht.

