Math 131 Homework 7

1. Prove that a subset S of \mathbb{R} is an interval if and only if it has the property that if $a, b \in S$ and a < x < b then $x \in S$. (As there are so many cases in this problem is is sufficient to do one open bounded case and one closed unbounded case).

2. Let *E* be a metric space and $X \subseteq E$. Prove that *X* is connected if and only if there do not exist disjoint non-empty subsets *A* and *B* of *X* such that $A \cup B = X$ and $\overline{A} \cap B = \phi$ and $\overline{B} \cap A = \phi$.

3. Let *E* be a metric space and *A* a connected subset of *E*. If $A \subseteq B \subseteq \overline{A}$ then prove that *B* must also be connected.

4. Let *E* be a metric space and let $\{A_n\}$ be a sequence of connected subsets of *E* such that for each $n \in \mathbb{N}$ we have $A_n \cap A_{n+1}$ is not empty. Show that $\bigcup_{n=1}^{\infty} A_n$ is connected.

5. Prove that every connected metric space with at least two points is uncountable.