Math 131

Homework 7

1. Prove that a subset S of \mathbb{R} is an interval if and only if it has the property that if $a, b \in S$ and $a<x<b$ then $x \in S$. (As there are so many cases in this problem is is sufficent to do one open bounded case and one closed unbounded case).
2. Let E be a metric space and $X \subseteq E$. Prove that X is connected if and only if there do not exist disjoint non-empty subsets A and B of X such that $A \cup B=X$ and $\bar{A} \cap B=\phi$ and $\bar{B} \cap A=\phi$.
3. Let E be a metric space and A a connected subset of E. If $A \subseteq B \subseteq \bar{A}$ then prove that B must also be connected.
4. Let E be a metric space and let $\left\{A_{n}\right\}$ be a sequence of connected subsets of E such that for each $n \in \mathbb{N}$ we have $A_{n} \cap A_{n+1}$ is not empty. Show that $\bigcup_{n=1}^{\infty} A_{n}$ is connected.
5. Prove that every connected metric space with at least two points is uncountable.
